Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum esculentum) Production for boosting Circular and Sustainable Horticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experimental Set-Up and Climate Data Measurement
2.2. Characterization of Recovered Products, Struvite and Ammonium Nitrate, Based on the Current Legal Framework
2.3. Struvite Dissolution Assays
2.4. Struvite and Ammonium Nitrate Fertigation Treatments
2.5. Sampling and Chemical Characterization
2.6. Fruit Yield, Quality, Biomass, and Agronomic Efficiency
2.7. Statistical Analysis
3. Results and Discussion
3.1. Struvite Dissolution Assays
3.2. Struvite and Ammonium Nitrate Fertigation Treatments
3.3. Leachates: Volume, Composition, and Nutrient Losses (N and P)
3.4. Fruit Yield, Quality, and Biomass
3.5. P and N Crop Uptake
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach. Ambio 2021, 50, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Boiarkina, I.; Yu, W.; Minh Huang, H.; Munir, T.; Wang, G. Young, B. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total. Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Magrí, A.; Carreras-Sempere, M.; Biel, C.; Colprim, J. Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives. Agronomy 2020, 10, 1039. [Google Scholar] [CrossRef]
- Vecino, X.; Reig, M.; Gibert, O.; Valderrama, C.; Cortina, J.L. Integration of liquid-liquid membrane contactors and electrodialysis for ammonium recovery and concentration as a liquid fertilizer. Chemosphere 2020, 245, 125606. [Google Scholar] [CrossRef]
- Huygens, D.; Saveyn, H.G.M. Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agronomy for sustainable development. Agron. Sustain. Dev. 2018, 38, 52. [Google Scholar] [CrossRef] [Green Version]
- Degryse, F.; Baird, R.; da Silva, R.C.; McLaughlin, M.J. Dissolution rate and agronomic effectiveness of struvite fertilizers—Effect of soil pH, granulation and base excess. Plant Soil 2017, 410, 139–152. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Rufí-Salís, M.; Parada, F.; Petit-Boix, A.; Gabarrell, X.; Villalba, G. Recovered phosphorus for a more resilient urban agriculture: Assessment of the fertilizer potential of struvite in hydroponics. Sci. Total. Environ. 2021, 799, 149424. [Google Scholar] [CrossRef]
- EC. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilizing Products and Amending Regulations (EC) no 1069/2009 and (EC) no 1107/2009 and Repealing Regulation (EC) no 2003/2003 (Text with EEA Relevance). European Parliament. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 24 October 2021).
- Huygens, D.; Saveyn, H.; Tonini, D.; Eder, P.; Sancho, L.D. DRAFT STRUBIAS Technical Proposals—DRAFT Nutrient Recovery Rules for Recovered Phosphate Salts, Ash-Basedmaterials and Pyrolysis Materials in View of Their Possible Inclusion as Component Material Categories in the Revised Fertiliser Regulation. Comission J-E. 2017. Available online: https://phosphorusplatform.eu/images/download/STRUBIAS-draft-report-24-5-17-I.pdf (accessed on 24 October 2021).
- Van der Hoek, J.P.; Duijff, R.; Reinstra, O. Nitrogen recovery from wastewater: Possibilities, competition with other resources, and adaptation pathways. Sustain. Switz. 2018, 10, 4605. [Google Scholar] [CrossRef] [Green Version]
- Sigurnjak, I.; Brienza, C.; Snauwaert, E.; De Dobbelaere, A.; De Mey, J.; Vaneeckhaute, C.; Michels, E.; Schoumans, O.; Adani, F.; Meers, E. Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-)scrubbing technology. Waste Manag. 2019, 89, 265–274. [Google Scholar] [CrossRef]
- VLM. Normen en Richtwaarden. Flemish Land Agency, Brussels, Belgium. 2016. Available online: https://www.vlm.be/nl/SiteCollectionDocuments/Publicaties/mestbank/bemestingsnormen_2016.pdf (accessed on 24 October 2021).
- Narváez, L.; Cáceres, R.; Marfà, O. Effects of climate and fertilization strategy on nitrogen balance in an outdoor potted crop of Viburnum tinus L. Span. J. Agric. Res. 2012, 10, 471. [Google Scholar] [CrossRef] [Green Version]
- Narváez, L.; Cáceres, R.; Marfà, O. Effect of different fertilization strategies on nitrogen balance in an outdoor potted crop of Osteospermum ecklonis (DC.) Norl. “Purple Red” under Mediterranean climate conditions. Span. J. Agric. Res. 2013, 11, 833. [Google Scholar] [CrossRef] [Green Version]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing water and nutrient losses from soilless cropping in southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J. Sustainable irrigation and nitrogen management of fertigated vegetable crops. Acta Hortic. 2017, 1150, 363–378. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Barto, E.K.; Menexes, G.; Rillig, M.C. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol. 2012, 62, 961–969. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Nutrient Solutions for Soilless Cultures. In Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; pp. 1–431. [Google Scholar] [CrossRef]
- Cáceres, R.; Marfà, O. Diagnosis of the fertility of compost-based growing media: Method comparison and monitoring in pot plant cultivation. Sci. Hortic. 2013, 164, 213–220. [Google Scholar] [CrossRef]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Martínez-Gaitán, C.; Granados, M.R.; Fernández, M.D.; Gallardo, M.; Thompson, R.B. Recovery of 15N labeled nitrogen fertilizer by fertigated and drip irrigated greenhouse vegetable crops. Agronomy 2020, 10, 741. [Google Scholar] [CrossRef]
- Muñoz, P.; Antón, A.; Paranjpe, A.; Ariño, J.I.; Montero, I. High decrease in nitrate leaching by lower N input without reducing greenhouse tomato yield. Agron. Sustain. Dev. 2008, 28, 489–495. [Google Scholar] [CrossRef] [Green Version]
- MAPA. Superficies y Producciones Anuales de Cultivo de Acuerdo con el Reglamento (CE) 543/2009 2020. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 9 August 2021).
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Sci. Total. Environ. 2021, 756, 143726. [Google Scholar] [CrossRef]
- EC. Regulation (European Comission) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilisers. Off. J. Eur. Commun. 2003, L304, 1–194. [Google Scholar]
- EC. Circular economy packages. Annexes to the Proposal for a regulation of the European Parliament and of the Council laying down rules on the making available on the market of CE marked fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009. 2016. Available online: https://www.europarl.europa.eu/doceo/document/A-8-2017-0270_EN.html (accessed on 24 October 2021).
- Bhuiyan, M.I.H.; Mavinic, D.S.; Beckie, R.D. A solubility and thermodynamic study of struvite. Environ. Technol. 2007, 28, 1015–1026. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Mavinic, D.S.; Bhuiyan, M.I.H.; Koch, F.A. Exploring the determination of struvite solubility product from analytical results. Environ. Technol. 2006, 27, 951–961. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Josa, A.; Muñoz, P.; Gassó, S.; Rieradevall, J.; Gabarrell, X. Applying nutrient dynamics to adjust the nutrient-water balance in hydroponic crops. A case study with open hydroponic tomato crops from Barcelona. Sci. Hortic. 2020, 261, 108908. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. Ecological significance and complexity of N-source preference in plants. Ann. Bot. 2013, 112, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Ghekiere, G.; Accoe, F.; Tack, F.M.G. Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: A field experiment. Biomass Bioenergy 2013, 55, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Soto, F.; Gallardo, M.; Thompson, R.B.; Peña-Fleitas, M.T.; Padilla, F.M. Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production. Agric. Ecosyst. Environ. 2015, 200, 62–70. [Google Scholar] [CrossRef]
- Massa, D.; Bonetti, A.; Cacini, S.; Faraloni, C.; Prisa, D.; Tuccio, L.; Petruccelli, R. Correction to: Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium. Hortic. Environ. Biotechnol. 2019, 60, 871–881. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Siddiqi, M.Y.; Kronzucker, H.J.; Britto, D.T.; Glass, A.D.M. Growth of a tomato crop at reduced nutrient concentrations as a strategy to limit eutrophication. J. Plant Nutr. 1998, 21, 1879–1895. [Google Scholar] [CrossRef]
- Bot, J.L.; Jeannequin, B.; Fabre, R. Growth and nitrogen status of soilless tomato plants following nitrate withdrawal from the nutrient solution. Ann. Bot. 2001, 88, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Jadoski, S.; Thompson, R.B.; Peña-Fleitas, M.T.; Gallardo, M. Regional N balance for an intensive vegetable production system in South-Eastern Spain. In Book of Abstracts, International Workshop on Nitrogen, Environment and Vegetables. NEV 2013; Università degli Studi di Torino: Turin, Italy, 2013; pp. 50–51. [Google Scholar]
- Atherton, J.; Rudich, J. The Tomato Crop. A Scientific Basis for Improvement; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Halbert-Howard, A.; Häfner, F.; Karlowsky, S.; Schwarz, D.; Krause, A. Correction to: Evaluating recycling fertilizers for tomato cultivation in hydroponics, and their impact on greenhouse gas emissions. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in lettuce. Acta Hortic. 2003, 627, 187–194. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Colla, G.; Mitchell, J.P.; Poudel, D.D.; Temple, S.R. Changes of tomato yield and fruit elemental composition in conventional, low input, and organic systems. J. Sustain. Agric. 2002, 20, 53–67. [Google Scholar] [CrossRef]
- Soylemez, S.; Pakyurek, A.Y. Effect of Different Tomato Rootstocks and EC Levels on the Nutrient of Fresh Tomatoes. Int. J. Sci. Technol. Res 2018, 4, 9. [Google Scholar]
- Ylivainio, K.; Jauhiainen, L.; Uusitalo, R.; Turtola, E. Waterlogging severely retards P use efficiency of spring barley (Hordeum vulgare). J. Agron. Crop. Sci. 2018, 204, 74–85. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
Campaign 2019 | March | April | May | June | July | August |
---|---|---|---|---|---|---|
Indoor global radiation (MJ·m−²·day−1) | 9.7 ± 2 | 9.2 ± 3.3 | 11.6 ± 4.4 | 13.7 ± 4 | 12.6 ± 2.6 | 13.7 ± 1.9 |
Temp. (°C) | 16.6 ± 5.1 | 17.6 ± 4.2 | 20.1 ± 4.7 | 25.4 ± 5.3 | 28 ± 4 | 28.9 ± 4 |
Maximum temp. (°C) | 24 ± 2.2 | 24 ± 1.7 | 26.4 ± 2.6 | 31.3 ± 3.7 | 33.3 ± 1.4 | 33.5 ± 3 |
Relative humidity (%) | 52 ± 18.9 | 58.9 ± 15.8 | 61.3 ± 15.5 | 56.1 ± 16.4 | 64.7 ± 13 | 60.3 ± 14.7 |
Campaign 2020 | ||||||
Indoor global radiation (MJ·m−²·day−1) | 9.2 ± 4 | 11.2 ± 4.6 | 13.4 ± 2.4 | 13.1 ± 3.5 | 13 ± 1.6 | |
Temp. (°C) | 19.8 ± 4 | 23.2 ± 5 | 25.6 ± 4.5 | 29 ± 4.3 | 29.8 ± 4.3 | |
Maximum temp. (°C) | 25.7 ± 2.4 | 30.6 ± 3.9 | 31.2 ± 2.3 | 31.4 ± 10.6 | 35.6 ± 2.6 | |
Relative humidity (%) | 66.5 ± 16.6 | 58.9 ± 17.5 | 62.2 ± 14.4 | 58.1 ± 13.3 | 59.8 ± 14 |
Struvite Batch | PO43− | NH4+ | Mg2+ |
---|---|---|---|
DK 2018 | 12.9 ± 0.03 | 7.2 ± 0.3 | 10.3 ± 0.6 |
DK 2019 | 10.8 ± 0.4 | 7.3 ± 0.2 | 9.8 ± 0.3 |
MU 2020 | 13.1 | 5.6 | 8.2 |
Ammonium nitrate batch | N-NO3− | N-NH4+ | N-total |
AN 2019 | 6.1 ± 0.8 | 4 ± 0.7 | 10.1 ± 1.5 |
AN 2020 | 3.8 ± 1.1 | 3.3 ± 1.0 | 7.1 ± 2.1 |
g·L−1 Concentrated Solution | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Campaign 2019 | Campaign 2020 | |||||||||
Initial/Final NS | Development NS | |||||||||
Conventional fertilizers | CON | STR | SAN | CON | STR | SAN | CON | STR | SAN | |
Nitric acid | HNO3 | 27.2 | 28.4 | 20.7 | 5.1 | 26.1 | 19.2 | 26.8 | 26.8 | 20.7 |
Potassium nitrate | KNO3 | 39.4 | 30.3 | 20.2 | 23.2 | 10.1 | ||||
Potassium sulfate | K2SO4 | 9.1 | 26.1 | 52.2 | 26.1 | 26.1 | 22.6 | 42.6 | 51.3 | |
Monopotassium phosphate | KH2PO4 | 13.6 | 13.6 | 13.6 | ||||||
Calcium nitrate | Ca(NO3)2 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | |||
Magnesium nitrate | Mg(NO3)2 | 12.8 | ||||||||
Recovered fertilizers | ||||||||||
Struvite | NH4MgPO4·6H2O | 28.7 | 28.7 | 23.7 | 23.7 | 23.7 | 23.7 | |||
Ammonium nitrate | NO3NH4 | 60 | 17.8 | 32 |
Sample | pH | P-Solubilized (%) | |
---|---|---|---|
Citric Acid | Nitric Acid | ||
Granular | 6 ± 0.3 | 22 ± 8 | 20 ± 3 |
Ground | 22 ± 5 | 19 ± 7 | |
Granular | 3.7 ± 0.7 | 86 ± 4 | 79 ± 9 |
Ground | 87 ± 13 | 81 ± 6 | |
Granular | 1.2 ± 0.3 | - | 88 ± 6 |
Ground | - | 87 ± 4 |
Treatments | Nutrient Concentration (Meq·L−1) | dS/m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | H2PO42- | K+ | Ca2+ | Mg2+ | Na+ | SO42- | Cl- | EC | pH | |
Campaign 2019 | ||||||||||
CON | 9.1 b | 0.9 b | 5.3 | 8.6 | 2.8 b | 3.8 | 5.9 c | 5.6 | 1.9 b | 6.4 c |
STR | 10.7 a | 1.2 a | 6.6 | 8.9 | 5.2 a | 3.8 | 9.1 b | 5.6 | 2.2 a | 6.5 b |
SAN | 10.3 ab | 1.1 a | 6.6 | 8.8 | 5.2 a | 3.8 | 13.6 a | 5.8 | 2.2 a | 7.0 a |
p-value | 0.0058 | <0.0001 | N.S | N.S | 0.0003 | N.S | 0.0001 | N.S | 0.0023 | <0.0001 |
Campaign 2020 | ||||||||||
CON | 4, 3–8, 2–5 | 1 | 5.5 | 8.8 | 3.1 b | 3.8 | 5.7 b | 4.6 | 2.1 | 6.4 c |
STR | 4, 6–7, 8–5, 2 | 0.9 | 5.0 | 8.2 | 4.7 a | 3.5 | 7.9 a | 4.6 | 2.1 | 6.8 b |
SAN | 5–8, 1–5, 3 | 0.9 | 3.3 | 8.6 | 4.5 a | 3.1 | 8.7 a | 4.6 | 2.2 | 6.9 a |
p-value | N.S | N.S | N.S | N.S | <0.0001 | N.S | <0.0001 | N.S | N.S | <0.0001 |
Total Fruit | Marketable Fruit | Biomass | Fruit | Leaves | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | Yield | Fruit Quality | Total | N | P | Mg | K | Ca | N | P | Mg | K | Ca | ||||
kg·m−2 | kg·m−2 | g/Fruit | Caliber | TSS | kg·m−2 | mg/100 g Wet Basis | %, Dry Basis | ||||||||||
Campaign 2019 | CON | 22.8 | 14.7 a | 278.8 | 81.5 | 5.3 | 1.16 b | 110 | 25 | 7.4 | 199 | 5.8 | 2.2 b | 0.6 b | 1.3 | 5.6 a | 4.4 b |
STR | 23.3 | 13.3 ab | 253.9 | 79.8 | 5.4 | 1.38 a | 96 | 22.7 | 6.5 | 183 | 5 | 2.8 a | 1.2 a | 1.8 | 3.2 b | 7.8 a | |
SAN | 21.6 | 12.5 b | 240.9 | 78.0 | 5.5 | 1.20 ab | 103 | 23.3 | 6.1 | 178 | 4.8 | 3.0 a | 1.6 a | 1.5 | 4.2 ab | 5.5 b | |
p-value | N.S | 0.0455 | N.S | N.S | N.S | 0.031 | N.S | N.S | N.S. | N.S | N.S | 0.008 | 0.003 | N.S. | 0.013 | 0.004 | |
Campaign 2020 | CON | 23 | 20.1 ab | 248.5 | 81.4 | 4.5 | 1,08 | 106 | 22.7 | 6.9 b | 213 | 7.2 | 2.4 | 0.9 | 1 | 1.7 | 8.8 |
STR | 22 | 18.8 b | 223.6 | 78.9 | 4.6 | 0,93 | 126 | 25.4 | 7.7 ab | 211 | 6.9 | 2.1 | 0.7 | 1.5 | 1.5 | 8.1 | |
SAN | 23 | 20.7 a | 230.6 | 79.7 | 4.6 | 0,9 | 135 | 27.3 | 8.3 a | 226 | 6.3 | 2.4 | 1 | 1.5 | 1.6 | 8.3 | |
p-value | N.S. | 0.0082 | N.S. | N.S. | N.S. | N.S. | N.S | N.S | 0.0386 | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreras-Sempere, M.; Caceres, R.; Viñas, M.; Biel, C. Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum esculentum) Production for boosting Circular and Sustainable Horticulture. Agriculture 2021, 11, 1063. https://doi.org/10.3390/agriculture11111063
Carreras-Sempere M, Caceres R, Viñas M, Biel C. Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum esculentum) Production for boosting Circular and Sustainable Horticulture. Agriculture. 2021; 11(11):1063. https://doi.org/10.3390/agriculture11111063
Chicago/Turabian StyleCarreras-Sempere, Mar, Rafaela Caceres, Marc Viñas, and Carmen Biel. 2021. "Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum esculentum) Production for boosting Circular and Sustainable Horticulture" Agriculture 11, no. 11: 1063. https://doi.org/10.3390/agriculture11111063
APA StyleCarreras-Sempere, M., Caceres, R., Viñas, M., & Biel, C. (2021). Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum esculentum) Production for boosting Circular and Sustainable Horticulture. Agriculture, 11(11), 1063. https://doi.org/10.3390/agriculture11111063