Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region, Climate and Soil Data
2.2. Serial Planting Experiments
2.3. APSIM-Potato Model
2.4. APSIM Simulation Set up
2.5. Data Processing
2.5.1. Divide Historical Years into Different Water-Temperature Year Types
Wet-Cool year: Pre_s > Pre_a & Tav_s < Tav_a
Dry-Hot year: Pre_s < Pre_a & Tav_s > Tav_a
Dry-Cool year: Pre_s < Pre_a & Tav_s < Tav_a
2.5.2. Statistical Analysis
3. Results
3.1. Precipitation Distribution in the APE of North China
3.2. Water and Temperature Stresses
3.3. Potato Yield Variation
3.4. OPP Variation
4. Discussion
4.1. Significance of Dividing Water-Temperature Year Type
4.2. Potato Yield Variation across APE
4.3. Variation in OPP
4.4. Uncertainties and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.P. Strategy of potato staple food: Significance, bottlenecks and policy suggestions. J. Huazhong Agric. Univ. 2015, 103, 1–7. [Google Scholar]
- Hijmans, R.J. The effect of climate change on global potato production. Am. Potato J. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Rykaczewska, K. The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. Am. Potato J. 2015, 92, 339–349. [Google Scholar] [CrossRef][Green Version]
- Tang, J.Z.; Wang, J.; He, D.; Huang, M.X.; Pan, Z.H.; Pan, X.B. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China. J. Meteorol. Res. 2016, 30, 983–997. [Google Scholar] [CrossRef]
- Tang, J.Z.; Wang, J.; Fang, Q.X.; Wang, E.L.; Yin, H.; Pan, X.B. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. Eur. J. Agron. 2018, 98, 82–94. [Google Scholar] [CrossRef]
- Xia, Z.C.; Pan, Z.H.; Zhang, L.Y.; Zhou, M.M.; Pan, X.B.; Tuo, D.B.; Zhao, P.Y. Examining Mechanisms of Vegetation Ecosystems Degradation Based on Water in Northern Farming-pastoral Zone. Res. Sci. 2010, 32, 317–322. [Google Scholar]
- Li, Y.; Wang, J.; Tang, J.Z.; Ma, X.Q.; Pan, X.B. Selecting planting date and cultivar for high yield and water use efficiency of potato across the agro-pastoral ecotone in North China. Trans. CSAE 2020, 36, 118–126. [Google Scholar]
- Yu, T.T.; Wang, F.X. Planting of different potato cultivars adapted to water availability in Inner Mongolia. Chin. Agric. Sci. Bull. 2015, 31, 70–77. [Google Scholar]
- Liu, K.; Harrison, M.T.; Hunt, J.; Angessa, T.T.; Meinke, H.; Li, C.D.; Tian, X.H.; Zhou, M.X. Identifying optimal planting and flowering periods for barley in Australia: A modelling approach. Agric. For. Meteorol. 2019, 282, 107871. [Google Scholar]
- Hu, Q.; Yang, N.; Pan, F.F.; Pan, X.B.; Wang, X.X.; Yang, P.Y. Adjusting planting Dates Improved Potato Adaptation to Climate Change in Semiarid Region, China. Sustainability 2017, 9, 615. [Google Scholar] [CrossRef][Green Version]
- Tang, J.Z.; Wang, J.; Wang, E.L.; Yu, Q.; Yin, H.; He, D.; Pan, X.B. Identifying key meteorological factors to yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China. Agric. For. Meteorol. 2018, 256–257, 283–291. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Tang, J.Z.; Wang, E.L.; Pan, Z.H.; Pan, X.B.; Hu, Q. Optimum planting date and cultivar maturity to optimize potato yield and yield stability in North China. Field Crop. Res. 2021, 269, 108179. [Google Scholar] [CrossRef]
- Singh, R.; Kroes, J.G.; Van Dam, J.C.; Feddes, R.A. Distributed ecohydrological modelling to evaluate the performance of irrigation system in Sirsa district, India: I. Current water management and its productivity. J. Hydrol. 2006, 329, 692–713. [Google Scholar] [CrossRef]
- Padovan, G.; Martre, P.; Semenov, M.A.; Masoni, A.; Bregaglio, S.; Ventrella, D.; Lorite, I.J.; Santos, C.; Bindi, M.; Ferrise, R.; et al. Understanding effects of genotype × environment × planting window interactions for durum wheat in the Mediterranean basin. Field Crop. Res. 2020, 259. [Google Scholar]
- Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R. Water and temperature stress define the optimal flowering period for wheat in southern-eastern Australia. Field Crop. Res. 2017, 209, 108–119. [Google Scholar] [CrossRef]
- Lilley, J.M.; Flohr, B.M.; Whish, J.P.; Farre, I.; Kirkegaard, J.A. Defining optimal planting and flowering periods for canola in Australia. Field Crop. Res. 2019, 235, 118–128. [Google Scholar] [CrossRef]
- Chen, C.; Fletcher, A.L.; Ota, N.; Flohr, B.M.; Lilley, J.M.; Lawes, R.A. Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crop. Res. 2020, 247, 107710. [Google Scholar] [CrossRef]
- Black, J.N.; Bonython, C.W.; Prescott, J.A. Solar radiation and the duration of sunshine. Q. J. R. Meteorol. Soc. 1954, 80, 231–235. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Han, E.J.; Ines, A.V.; Koo, J. Development of a 10-km resolution global soil profile dataset for crop modeling applications. Environ. Model. Softw. 2019, 119, 70–83. [Google Scholar] [CrossRef]
- Shen, J.J. Study on Optimalization of Planting Date and Climate Suitability of Main Crops in Agro-Pastoral Ecotone; China Agricultural University: Pekin, China, 2011. [Google Scholar]
- Tang, J.Z. A Study on Planting Pattern of Potato to Narrow Yield Gap and Increase Precipitation Use Efficiency in the Agro-Pastoral Ecotone; Agriculture University: Beijing, China, 2019. [Google Scholar]
- Chen, R.Y.; Meng, M.L.; Liang, H.Q.; Zhang, J.; Wang, Y.H.; Wang, Z.X. Effects of different treatments of irrigation and fertilization on the yield and nitrogen utilization characteristic of potato. Chin. Agric. Sci. Bull. 2012, 28, 196–201. [Google Scholar]
- Brown, H.E.; Huth, N.; Holzworth, D. A potato model built using the APSIM plant. NET Framework. In Proceedings of the 19th International Congress on Modeling and Simulation, Perth, WA, Australia, 12–16 December 2011; pp. 961–967. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 1 April 2021).
- Hansen, J.W.; Challinor, A.; Ines, A.; Wheeler, T.; Moron, V. Translating climate forecasts into agricultural terms: Advances and challenges. Clim. Res. 2006, 33, 27–41. [Google Scholar] [CrossRef]
- Jones, J.W.; Hansen, J.W.; Royce, F.S.; Messina, C.D. Potential benefits of climate forecasting to agriculture. Agric. Ecosyst. Environ. 2000, 82, 169–184. [Google Scholar] [CrossRef]
- Zhao, J.H.; Yang, J.; Gong, Z.Q.; Feng, G.L. Analysis of and discussion about dynamic-statistical climate prediction for summer rainfall of 2013 in China. Adv. Meteorol. Sci. Technol. 2015, 5, 24–28. [Google Scholar]
- Fraisse, C.W.; Breuer, N.E.; Zierden, D.; Bellow, J.G.; Paz, J.; Cabrera, V.E.; Garcia, A.G.Y.; Ingram, K.T.; Hatch, U.; Hoogenboom, G. AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Comput. Electron. Agr. 2006, 53, 13–27. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Semiarid crop production from a hydrological perspective: Gap between potential and actual yields. Crit. Rev. Plant. Sci. 2000, 19, 319–346. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J. Breeding for high water-use efficiency. J. Exp. Bot. 2004, 55, 2447–2460. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Martone, L.; Pilar, P.M.; Grewal, M.S. Long term studies of crop yields with changing rainfall and fertilization. Agric. Eng. Res. 2007, 13, 37–47. [Google Scholar]
- Harms, T.E.; Konscheuh, M.N. Water savings in irrigated potato production by varying hill-furrow or bed-furrow configuration. Agric. Water Manag. 2010, 97, 1399–1404. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture: The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef][Green Version]
- Yu, Q.; Li, L.H.; Luo, Q.Y.; Eamus, D.; Xu, S.H.; Chen, C.; Wang, E.L.; Liu, J.D.; Nielsen, D.C. Year patterns of climate impact on wheat yields. Int. J. Climatol. 2014, 34, 518–528. [Google Scholar] [CrossRef]
- Lynch, D.R.; Foroud, N.; Kozub, G.C.; Fames, B.C. The effect of moisture stress at three growth stages on the yield, components of yield and processing quality of eight potato varieties. Am. Potato J. 1995, 72, 375–386. [Google Scholar] [CrossRef]
- Ren, W.J.; Ren, L.; Liu, S.X. Moisture dynamics and supply and demand on potato fields inarid areas of southern Loess Plateau. Chin. Potato J. 2015, 29, 355–361. [Google Scholar]
- Li, D.; Qian, L.H. The estimation of variation of groundwater table in the Inner Mongolia in 2015. Inn. Mong. Water Res. 2016, 5, 3–5. [Google Scholar]
- Zhu, J.L.; Liang, X.J.; Wang, Y.N. Research on the evaluation of groundwater resources in the districts of saving water and increasing grain yield in Jalaid Banner of Inner Mongolia. China Water Res. 2014, 11, 28–30. [Google Scholar]
- Zhang, J.; Zhao, P.Y.; Pan, Z.H.; Duan, Y.; Li, H.C.; Wang, B.; Jing, Y.P.; Dong, Z.Q. Determination of input threshold of nitrogen, fertilizer based on environment-friendly agriculture and maize yield. Trans. Chin. Soc. Agric. Eng. 2016, 32, 136–143. [Google Scholar]
- Gao, S.M.; Zhang, X.C.; Wang, Y.H. Influence of Different Mulching and Furrow-Ridge Planting Motheds on Soil Moisture and Yield of Potato on Dryland. J. Soil Water Conserv. 2010, 24, 249–251. [Google Scholar]
- Hou, X.Q.; Tang, J.; Yu, L.L.; Zhao, F.P.; Wang, Q.W.; Hu, E.J.; Wei, K.R. Effect of autumn mulching tillage on growth and water use efficiency of potato. J. Drain. Irrig. Mach. Eng. 2016, 34, 165–172. [Google Scholar]
- Li, R.; Wang, Y.L.; Wu, P.N.; Sun, R.P.; Qiu, J.X.; Su, M.; Hou, X.Q. Ridge and furrow mulching improving soil water-temperature condition and increasing potato yield in dry-farming areas of south Ningxia. Trans. Chin. Soc. Agric. Eng. 2017, 33, 168–175. [Google Scholar]
- Fan, S.J.; Wang, D.; Zhang, J.L.; Bai, J.P.; Liu, W.X.; Ma, Z.X.; Peng, H.Y. Effects of different cultivation techniques on soil temperature, moisture and potato yield. Trans. CSAE 2011, 27, 216–221. [Google Scholar]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef][Green Version]
- Zhang, D.; Liu, H.B.; Hu, W.L.; Qin, X.H.; Ma, X.W.; Yan, C.R.; Wang, H.Y. The status and distribution characteristics of residual mulching film in Xinjiang. China J. Integr. Agric. 2016, 15, 2639–2646. [Google Scholar] [CrossRef][Green Version]
- Jiang, R.; Guo, S.; Ma, D.D. Plastic film mulching system and the impact on soil ecological environment in rain-fed drylands of China. Chin. J. Eco Agric. 2018, 26, 317–328. [Google Scholar]
- Zhang, Y.; Zhang, L.Z.; Yang, N.; Huth, N.; Wang, E.L.; Werf, W.V.D.; Evers, J.B.; Wang, Q.; Zhang, D.S.; Wang, R.N.; et al. Optimized planting time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agric. For. Meteorol. 2019, 266–267, 184–197. [Google Scholar] [CrossRef]
- Hou, X.Q.; Li, R. Effects of mulching with no-tillage on soil physical properties and potato yield in mountain area of southern Ningxia. Trans. CSAE 2015, 31, 112–119. [Google Scholar]
- Sparks, A.H.; Forbes, G.A.; Hijmans, R.J.; Garrett, K.A. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 2014, 20, 3621–3631. [Google Scholar] [CrossRef] [PubMed]
- Chandel, R.S.; Pathania, M.; Verma, K.S.; Bhatacharyya, B.; Vashisth, S.; Kumar, V. The ecology and control of potato whitegrubs of India. Potato Res. 2015, 58, 147–164. [Google Scholar] [CrossRef]
- Carter, M.R.; Sanderson, J.B. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil. Tillage Res. 2001, 63, 1–13. [Google Scholar] [CrossRef]
Site | Latitude (°) | Longitude (°) | Altitude (m) |
---|---|---|---|
Dingbian (DB) | 37.35 | 107.35 | 1360.3 |
Yulin (YL) | 38.16 | 109.47 | 1157 |
Yuzhong (YZ) | 35.52 | 104.09 | 1874.4 |
Dongsheng (DS) | 39.50 | 109.59 | 1461.9 |
Siziwangqi (SZWQ) | 41.32 | 111.41 | 1490.1 |
Duolun (DL) | 42.11 | 116.28 | 1245.4 |
Linxi (LX) | 43.36 | 118.04 | 799.5 |
Xiwuzhumuqinqi (XWZM) | 44.34 | 117.38 | 995.9 |
Wengniuteqi (WNTQ) | 42.56 | 119.01 | 634.3 |
Zhaluteqi (ZLTQ) | 44.34 | 120.54 | 265 |
Tailai (TL) | 46.40 | 123.45 | 149.5 |
Hailaer (HLE) | 49.13 | 119.45 | 610.2 |
Parameter | Favorita | Connibeck | Kexin_1 |
---|---|---|---|
Degree days from planting to emergence (y-tt-emergence, °C d) | 265 | 320 | 335 |
Degree days from emergence to early tuber formation (tt-earlytuber, °C d) | 185 | 205 | 210 |
Degree days from early tuber formation to senescing (tt-senescing, °C d) | 510 | 590 | 660 |
Photoperiod after emergence (x_pp_emergence, h) | 12 | ||
Maximum specific leaf area for delta LAI (y_sla_max, mm2 g−1) | 35,000–40,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; He, Y.; Luo, S.; Ma, X.; Li, Z.; Lin, Z.; Zhang, Z. Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China. Agriculture 2021, 11, 1061. https://doi.org/10.3390/agriculture11111061
Yang J, He Y, Luo S, Ma X, Li Z, Lin Z, Zhang Z. Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China. Agriculture. 2021; 11(11):1061. https://doi.org/10.3390/agriculture11111061
Chicago/Turabian StyleYang, Jinpeng, Yingbin He, Shanjun Luo, Xintian Ma, Zhiqiang Li, Zeru Lin, and Zhiliang Zhang. 2021. "Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China" Agriculture 11, no. 11: 1061. https://doi.org/10.3390/agriculture11111061