Summer Pasture in Mountainous Area Affects Milk Fatty Acid Profile of Dual-Purpose Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herd
2.2. Sample Collection and Chemical Analysis
2.3. Data Editing and Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics and Analysis of Variance
3.2. Phenotypic Correlations
3.3. Effect of Grazing on Milk Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mack, G.; Walter, T.; Flury, C. Seasonal alpine grazing in Switzerland: Economic importance and impact on biotic communities. Environ. Sci. Pol. 2013, 32, 48–57. [Google Scholar] [CrossRef]
- Niero, G.; Koczura, M.; De Marchi, M.; Currò, S.; Kreuzer, M.; Turille, G.; Berard, J. Are cheese-making properties of dual purpose cattle impaired by highland grazing? A case study using Aosta Red Pied cows. Ital. J. Anim. Sci. 2018, 17, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Arnott, G.; Ferris, C.P.; O’Connell, N.E. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animal 2016, 11, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovolenta, S.; Ventura, W.; Malossini, F. Dairy cows grazing and alpine pasture: Effect of pattern of supplement allocation on herbage intake, body condition, milk yield and coagulation properties. Anim. Res. 2002, 51, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Romanzin, A.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Concentrate supplement modifies the feeding behaviour of Simmental cows grazing in two high mountain pastures. Animals 2018, 8, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiber, F.; Kreuzer, M.; Leuenberger, H.; Wettstein, H.R. Contribution of diet type and pasture conditions to the influence of high altitude grazing on intake, performance and composition and renneting properties of the milk of cows. Anim. Res. 2006, 55, 37–53. [Google Scholar] [CrossRef]
- Senczuk, G.; Mastrangelo, S.; Ciani, E.; Battaglini, L.; Cendron, F.; Ciampolini, R.; Crepaldi, P.; Mantovani, R.; Bongioni, G.; Pagnacco, G.; et al. The genetic heritage of Alpine local cattle breeds using genomic SNP data. Genet. Sel. Evol. 2020, 52, 40. [Google Scholar] [CrossRef]
- Cesarani, A.; Hidalgo, J.; Garcia, A.; Degano, L.; Vicario, D.; Masuda, Y.; Misztal, I.; Lourenco, D. Beef traits genetic parameters based on old and recent data and its implications for genomic predictions in Italian Simmental cattle. J. Anim. Sci. 2020, 98, skaa242. [Google Scholar] [CrossRef]
- ANAPRI. Available online: https://www.anapri.eu/it/indice-ida.html (accessed on 10 August 2021).
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Grummer, R.R. Effect of feed on the composition of milk fat. J. Dairy Sci. 1991, 74, 3244–3257. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Gustavsson, F.; Glantz, M.; Paulsson, M.; Larsen, L.B.; Larsen, M.K. The influence of feed and herd of fatty acid composition in 3 dairy breeds (Danish Holstein, Danish Jersey, and Swedish Red). J. Dairy Sci. 2012, 95, 6362–6371. [Google Scholar] [CrossRef] [Green Version]
- Gottardo, P.; Penasa, M.; Righi, F.; Lopez-Villalobos, N.; Cassandro, M.; De Marchi, M. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Ital. J. Anim. Sci. 2017, 16, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 2014, 97, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Voisin, A. Grass Productivity; Philosophical Library Inc.: New York, NY, USA, 1959. [Google Scholar]
- Niero, G.; Bobbo, T.; Callegaro, S.; Visentin, G.; Pornaro, C.; Penasa, M.; Cozzi, G.; De Marchi, M.; Cassandro, M. Dairy cows’ health during alpine grazing as assessed by milk traits, including differential somatic cell count: A case study from Italy. Animals 2021, 11, 981. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.K.A.; Shook, G.E. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Visentin, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Phenotypic variation of milk fatty acid composition of Pinzgauer cattle breed. Ital. J. Anim. Sci. 2018, 17, 574–577. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Penasa, M.; Visentin, G.; Benedet, A.; Cassandro, M.; De Marchi, M. Multi-breed herd approach to detect breed differences in composition and fatty acid profile of cow milk. Czech J. Anim. Sci. 2019, 64, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, T.; Penasa, M.; Cassandro, M. Genetic parameters of bovine milk fatty acid profile, yield, composition, total and differential somatic cell count. Animals 2020, 10, 2406. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.M.L.; van Valenberg, H.J.F.; Dijkstra, J.; van Hooijdonk, A.C.M. Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci. 2009, 92, 4745–4755. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Soyeurt, H.; Gillon, A.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Estimation of heritability and genetic correlations for the major fatty acids in bovine milk. J. Dairy Sci. 2007, 90, 4435–4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrini, J.; Iung, L.H.S.; Rodriguez, M.A.P.; Salvian, M.; Pértille, F.; Rovadoscki, G.A.; Cassoli, L.D.; Coutinho, L.L.; Machado, P.F.; Wiggans, G.R.; et al. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. J. Anim. Breed. Genet. 2016, 133, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Vanrobays, M.-L.; Bastin, C.; Vandenplas, J.; Hammami, H.; Soyeurt, H.; Vanlierde, A.; Dehareng, F.; Froidmont, E.; Gengler, N. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra. J. Dairy Sci. 2016, 99, 7247–7260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chillard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef] [PubMed]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.; van Arendonk, J.A. Effect of lactation stage and energy status on milk fat composition of Holstein–Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef]
Parity Number | N, Prior Editing | N, Post Editing |
---|---|---|
1 | 120 | 118 |
2 | 194 | 192 |
3 | 96 | 83 |
4 | 80 | 79 |
5 | 104 | 92 |
6 | 32 | 21 |
7 | 10 | 10 |
8 | 22 | 21 |
Trait | N | Mean | SD | CV 2, % | Minimum | Maximum |
---|---|---|---|---|---|---|
Milk yield, kg/milking | 608 | 13.53 | 4.63 | 34.18 | 2.00 | 27.50 |
Milk gross composition, % | ||||||
Fat | 584 | 3.58 | 0.75 | 21.10 | 2.05 | 6.36 |
Protein | 607 | 3.46 | 0.34 | 9.76 | 2.54 | 4.44 |
Casein | 606 | 2.73 | 0.27 | 10.04 | 1.95 | 3.46 |
Lactose | 610 | 4.85 | 0.19 | 4.01 | 3.76 | 5.30 |
SCS, units | 605 | 2.81 | 1.70 | 60.42 | −1.06 | 8.76 |
Individual FA, g/100 mL milk | ||||||
C14:0 | 610 | 0.32 | 0.07 | 23.03 | 0.13 | 0.66 |
C16:0 | 604 | 0.86 | 0.19 | 22.18 | 0.35 | 1.40 |
C18:0 | 605 | 0.33 | 0.10 | 30.69 | 0.02 | 0.66 |
C18:1 | 601 | 1.01 | 0.30 | 29.22 | 0.06 | 2.12 |
Groups of FA, g/100 mL milk | ||||||
SCFA | 604 | 0.46 | 0.12 | 26.56 | 0.09 | 0.86 |
MCFA | 606 | 1.34 | 0.29 | 21.65 | 0.54 | 2.23 |
LCFA | 601 | 1.23 | 0.40 | 32.77 | 0.01 | 2.66 |
SFA | 605 | 2.31 | 0.54 | 23.63 | 0.62 | 4.13 |
MUFA | 601 | 0.97 | 0.28 | 29.19 | 0.10 | 1.86 |
PUFA | 607 | 0.11 | 0.03 | 25.19 | 0.03 | 0.25 |
TFA | 576 | 0.11 | 0.04 | 40.20 | 0.00 | 0.25 |
Trait | Fixed Effects | Cow Variance, % | RSD 2 | |||
---|---|---|---|---|---|---|
Sampling Period | Breed | Days in Milk | Parity | |||
Individual FA, g/100 mL milk | ||||||
C14:0 | 56.15 *** | 0.05 | 11.58 *** | 4.18 *** | 21.78 | 0.06 |
C16:0 | 71.27 *** | 0.07 | 11.07 *** | 1.30 | 21.50 | 0.14 |
C18:0 | 2.21 | 0.01 | 14.60 *** | 1.31 | 21.55 | 0.08 |
C18:1 | 0.56 | 0.03 | 16.87 *** | 1.59 | 1.50 | 0.23 |
Groups of FA, g/100 mL milk | ||||||
SCFA | 99.88 *** | 0.46 | 1.90 | 1.33 | 22.72 | 0.09 |
MCFA | 100.15 *** | 0.20 | 9.19 *** | 2.17 | 25.31 | 0.21 |
LCFA | 8.48 *** | 0.03 | 16.51 *** | 1.53 | 17.97 | 0.31 |
SFA | 70.55 *** | 0.15 | 9.83 *** | 2.07 | 17.53 | 0.41 |
MUFA | 1.56 | 0.01 | 20.77 *** | 2.42 * | 17.02 | 0.21 |
PUFA | 3.99 * | 0.07 | 11.70 *** | 1.60 | 22.48 | 0.02 |
TFA | 28.17 *** | 1.01 | 7.81 *** | 2.29 * | 21.12 | 0.03 |
Trait | Individual FA | Groups of FA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | C16:0 | C18:0 | C18:1 | SCFA | MCFA | LCFA | SFA | MUFA | PUFA | TFA | |
Milk yield | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 *** | 0.01 | 0.05 | 0.06 | 0.03 | 0.05 | 0.10 * |
Milk gross composition | |||||||||||
Fat | 0.63 *** | 0.79 *** | 0.87 *** | 0.85 *** | 0.85 *** | 0.77 *** | 0.88 *** | 0.95 *** | 0.85 *** | 0.79 *** | 0.57 *** |
Protein | 0.22 *** | 0.13 *** | 0.01 | −0.01 | 0.11 *** | 0.21 *** | −0.05 | 0.12 *** | −0.02 | 0.03 | 0.00 |
Casein | 0.26 *** | 0.19 *** | 0.11 * | 0.08 * | 0.19 *** | 0.26 *** | 0.05 | 0.20 *** | 0.07 | 0.09 * | 0.07 |
Lactose | −0.18 *** | −0.17 *** | 0.01 | −0.01 | −0.02 | −0.22 *** | 0.00 | −0.13 ** | −0.03 | −0.01 | −0.02 |
SCS | 0.26 *** | 0.30 *** | 0.22 *** | 0.16 *** | 0.15 *** | 0.30 *** | 0.19 *** | 0.26 *** | 0.21 *** | 0.17 *** | 0.09 * |
Individual FA | |||||||||||
C14:0 | 0.86 *** | 0.47 *** | 0.31 *** | 0.63 *** | 0.93 *** | 0.42 *** | 0.76 *** | 0.37 *** | 0.36 *** | 0.19 *** | |
C16:0 | 0.69 *** | 0.51 *** | 0.73 *** | 0.96 *** | 0.59 *** | 0.89 *** | 0.55 *** | 0.47 *** | 0.30 *** | ||
C18:0 | 0.89 *** | 0.67 *** | 0.61 *** | 0.94 *** | 0.81 *** | 0.91 *** | 0.81 *** | 0.57 *** | |||
C18:1 | 0.68 *** | 0.45 *** | 0.96 *** | 0.76 *** | 0.98 *** | 0.88 *** | 0.73 *** | ||||
Groups of FA | |||||||||||
SCFA | 0.76 *** | 0.66 *** | 0.93 *** | 0.64 *** | 0.71 *** | 0.64 *** | |||||
MCFA | 0.54 *** | 0.89 *** | 0.48 *** | 0.44 *** | 0.29 *** | ||||||
LCFA | 0.78 *** | 0.98 *** | 0.86 *** | 0.63 *** | |||||||
SFA | 0.75 *** | 0.73 *** | 0.57 *** | ||||||||
MUFA | 0.86 *** | 0.66 *** | |||||||||
PUFA | 0.75 *** |
Trait | Barn Farming | Early Grazing | Mid-Late Grazing |
---|---|---|---|
Individual FA, g/100 mL milk | |||
C14:0 | 0.36 (0.007) a | 0.33 (0.006) b | 0.29 (0.006) c |
C16:0 | 0.95 (0.02) a | 0.89 (0.01) b | 0.76 (0.02) c |
C18:0 | 0.32 (0.01) | 0.34 (0.01) | 0.34 (0.01) |
C18:1 | 1.00 (0.03) | 1.03 (0.02) | 1.02 (0.02) |
Groups of FA, g/100 mL milk | |||
SCFA | 0.51 (0.01) a | 0.49 (0.01) a | 0.37 (0.01) b |
MCFA | 1.49 (0.03) a | 1.40 (0.02) b | 1.16 (0.02) c |
LCFA | 1.18 (0.04) b | 1.23 (0.03) b | 1.33 (0.03) a |
SFA | 2.53 (0.05) a | 2.40 (0.04) b | 2.00 (0.04) c |
MUFA | 0.96 (0.03) | 0.98 (0.02) | 1.01 (0.02) |
PUFA | 0.105 (0.003) b | 0.111 (0.002) a | 0.106 (0.002) ab |
TFA | 0.108 (0.004) b | 0.117 (0.003) a | 0.091 (0.004) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niero, G.; Bobbo, T.; Callegaro, S.; Visentin, G.; Pornaro, C.; Cassandro, M.; Cozzi, G.; De Marchi, M.; Penasa, M. Summer Pasture in Mountainous Area Affects Milk Fatty Acid Profile of Dual-Purpose Cows. Agriculture 2021, 11, 928. https://doi.org/10.3390/agriculture11100928
Niero G, Bobbo T, Callegaro S, Visentin G, Pornaro C, Cassandro M, Cozzi G, De Marchi M, Penasa M. Summer Pasture in Mountainous Area Affects Milk Fatty Acid Profile of Dual-Purpose Cows. Agriculture. 2021; 11(10):928. https://doi.org/10.3390/agriculture11100928
Chicago/Turabian StyleNiero, Giovanni, Tania Bobbo, Simone Callegaro, Giulio Visentin, Cristina Pornaro, Martino Cassandro, Giulio Cozzi, Massimo De Marchi, and Mauro Penasa. 2021. "Summer Pasture in Mountainous Area Affects Milk Fatty Acid Profile of Dual-Purpose Cows" Agriculture 11, no. 10: 928. https://doi.org/10.3390/agriculture11100928
APA StyleNiero, G., Bobbo, T., Callegaro, S., Visentin, G., Pornaro, C., Cassandro, M., Cozzi, G., De Marchi, M., & Penasa, M. (2021). Summer Pasture in Mountainous Area Affects Milk Fatty Acid Profile of Dual-Purpose Cows. Agriculture, 11(10), 928. https://doi.org/10.3390/agriculture11100928