Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Topographical Analysis Using ISUM
2.3. Soil Bulk Density (Bd)–Sampling and Calculations
2.4. Statistical Analysis
2.4.1. Correlation between Bulk Density Soil Map and ISUM Map
2.4.2. Calculation of Soil Lowering Using Bulk Density Data Set and ISUM
3. Results
3.1. Bulk Density
3.2. Soil Surface Changes Using ISUM
3.3. Integrated Analysis Using ISUM and Bd
3.3.1. Spatial Correlation Analysis between Bd and ISUM Maps
3.3.2. Comparison of Soil Lowering Calculated Using Bulk Density and ISUM Data Set
4. Discussion
4.1. ISUM as an Efficient Method to Survey Soil Compaction for Ecological Services
4.2. Bd Temporal Changes
4.3. The ISUM Data
4.4. Integrated Analysis of the Methods (ISUM and Bd)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation–a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Novara, A.; Pulido, M.; Rodrigo-Comino, J.; Prima, S.D.; Smith, P.; Gristina, L.; Gimenez-Morera, A.; Terol, E.; Salesa, D.; Keesstra, S. Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos de Investigación Geográfica 2019, 45, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Du Preez, C.C.; Van Huyssteen, C.W.; Mnkeni, P.N. Land use and soil organic matter in South Africa 2: A review on the influence of arable crop production. S. Afr. J. Sci. 2011, 107, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Gramlich, A.; Stoll, S.; Stamm, C.; Walter, T.; Prasuhn, V. Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields—A review. Agric. Ecosyst. Environ. 2018, 266, 84–99. [Google Scholar] [CrossRef]
- Luizão, F.J.; Fearnside, P.M.; Cerri, C.E.; Lehmann, J. The maintenance of soil fertility in Amazonian managed systems. Amazon. Glob. Chang. Geophys. Monogr. Ser. 2009, 186, 311–336. [Google Scholar] [CrossRef]
- Wu, D.-M.; Yu, Y.-C.; Xia, L.-Z.; Yin, S.-X.; Yang, L.-Z. Soil fertility indices of citrus orchard land along topographic gradients in the Three Gorges Area of China. Pedosphere 2011, 21, 782–792. [Google Scholar] [CrossRef]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales, J.M.; Cerdà, A.; Brevik, E.C. The multidisciplinary origin of soil geography: A review. Earth-Sci. Rev. 2018, 177, 114–123. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Stoessel, F.; Sonderegger, T.; Bayer, P.; Hellweg, S. Assessing the environmental impacts of soil compaction in Life Cycle Assessment. Sci. Total Environ. 2018, 630, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Mossadeghi-Björklund, M.; Arvidsson, J.; Keller, T.; Koestel, J.; Lamande, M.; Larsbo, M.; Jarvis, N. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil. Soil Tillage Res. 2016, 156, 91–98. [Google Scholar] [CrossRef]
- Van Dijck, S.; Van Asch, T.W. Compaction of loamy soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France. Soil Tillage Res. 2002, 63, 141–153. [Google Scholar] [CrossRef]
- Ferrero, A.; Usowicz, B.; Lipiec, J. Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil Tillage Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Lipiec, J.; Usowicz, B.; Ferrero, A. Impact of soil compaction and wetness on thermal properties of sloping vineyard soil. Int. J. Heat Mass Transf. 2007, 50, 3837–3847. [Google Scholar] [CrossRef]
- Becerra, A.T.; Botta, G.; Bravo, X.L.; Tourn, M.; Melcon, F.B.; Vazquez, J.; Rivero, D.; Linares, P.; Nardon, G. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Tillage Res. 2010, 107, 49–56. [Google Scholar] [CrossRef]
- Pižl, V. Effect of soil compaction on earthworms (Lumbricidae) in apple orchard soil. Soil Biol. Biochem. 1992, 24, 1573–1575. [Google Scholar] [CrossRef]
- Liu, X.; Feike, T.; Shao, L.; Sun, H.; Chen, S.; Zhang, X. Effects of different irrigation regimes on soil compaction in a winter wheat-summer maize cropping system in the North China Plain. Catena 2016, 137, 70–76. [Google Scholar] [CrossRef]
- Antille, D.L.; Bennett, J.M.; Jensen, T.A. Soil compaction and controlled traffic considerations in Australian cotton-farming systems. Crop Pasture Sci. 2016, 67, 1–28. [Google Scholar] [CrossRef]
- Celik, I.; Günal, H.; Acar, M.; Gök, M.; Barut, Z.B.; Pamiralan, H. Long-term tillage and residue management effect on soil compaction and nitrate leaching in a Typic Haploxerert soil. Int. J. Plant Prod. 2017, 11, 131–150. [Google Scholar] [CrossRef]
- Greacen, E.L.; Sands, R. Compaction of forest soils. A review. Soil Res. 1980, 18, 163–189. [Google Scholar] [CrossRef]
- Soane, B.; Van Ouwerkerk, C. Soil compaction problems in world agriculture. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 1–21. [Google Scholar] [CrossRef]
- Unger, P.W.; Kaspar, T.C. Soil compaction and root growth: A review. Agron. J. 1994, 86, 759–766. [Google Scholar] [CrossRef]
- Shahgholi, G.; Abuali, M. Measuring soil compaction and soil behavior under the tractor tire using strain transducer. J. Terramechanics 2015, 59, 19–25. [Google Scholar] [CrossRef]
- Morgan, R.; Smith, A. Simulation of soil erosion induced by human trampling. J. Environ. Manag. 1980, 10, 155–165. [Google Scholar]
- Bogunović, I.; Kisić, I.; Jurisić, A. Soil compaction under different tillage system on Stagnic Luvisols. Agric. Conspec. Sci. 2014, 79, 57–63. [Google Scholar]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Hamza, M.; Anderson, W. Soil compaction in cropping systems: A review of the nature, causes, and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Bogunović, I.; Kisić, I.; Maletić, E.; Jurišić, A.; Roškar, L.; Dekemati, I. Soil Compaction in different ages vineyards in Pannonian Croatia. Part II. Modeling spatial variability of soil compaction parameters in vineyard. J. Cent. Eur. Agric. 2016, 17, 545–562. [Google Scholar] [CrossRef]
- Bogunović, I.; Kisić, I.; Maletić, E.; Perčin, A.; Matošić, S.; Roškar, L. Soil compaction in vineyards of different ages in Pannonian Croatia. Part I. Influence of machinery traffic and soil management on compaction of individual horizons. J. Cent. Eur. Agric. 2016, 17, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Ghadernejad, K.; Shahgholi, G.; Mardani, A.; Chiyaneh, H.G. Prediction effect of farmyard manure, multiple passes and moisture content on clay soil compaction using adaptive neuro-fuzzy inference system. J. Terramech. 2018, 77, 49–57. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.; Nowatzki, J. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Ozpinar, S.; Ozpinar, A.; Cay, A. Soil management effect on soil properties in traditional and mechanized vineyards under a semiarid Mediterranean environment. Soil Tillage Res. 2018, 178, 198–208. [Google Scholar] [CrossRef]
- O’sullivan, M.; Henshall, J.; Dickson, J. A simplified method for estimating soil compaction. Soil Tillage Res. 1999, 49, 325–335. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Ampoorter, E.; Van Nevel, L.; De Vos, B.; Hermy, M.; Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 2010, 260, 1664–1676. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Cerdà, A. Improving stock unearthing method to measure soil erosion rates in vineyards. Ecol. Indic. 2018, 85, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Keshavarzi, A.; Zeraatpisheh, M.; Gyasi-Agyei, Y.; Cerdà, A. Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards. Comput. Electron. Agric. 2019, 159, 147–156. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Ponsoda-Carreres, M.; Salesa, D.; Terol, E.; Gyasi-Agyei, Y.; Cerdà, A. Soil erosion processes in subtropical plantations (Diospyros kaki) managed under flood irrigation in Eastern Spain. Singap. J. Trop. Geogr. 2020, 41, 120–135. [Google Scholar] [CrossRef]
- Casalí, J.; Giménez, R.; De Santisteban, L.; Álvarez-Mozos, J.; Mena, J.; de Lersundi, J.D.V. Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks. Catena 2009, 78, 12–19. [Google Scholar] [CrossRef]
- Brenot, J.; Quiquerez, A.; Petit, C.; Garcia, J.-P.; Davy, P. Soil erosion rates in Burgundian vineyards. Bolletino Soc. Geol. Ital. 2006. [Google Scholar] [CrossRef]
- Brenot, J.; Quiquerez, A.; Petit, C.; Garcia, J.-P. Erosion rates and sediment budgets in vineyards at 1-m resolution based on stock unearthing (Burgundy, France). Geomorphology 2008, 100, 345–355. [Google Scholar] [CrossRef]
- Snedecor, G.; Cochran, W. Statistical Methods, 6th ed.; Iowa State College Press: Ames, IA, USA, 1967; p. 507. [Google Scholar]
- Davidson, S.E.; Page, J. Factors Influencing Swelling and Shrinking in Soils. Soil Sci. Soc. Am. J. 1956, 20, 320–324. [Google Scholar] [CrossRef]
- Lal, R.; Stewart, B.A. Soil Degradation and Restoration in Africa; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hefner, M.; Labouriau, R.; Nørremark, M.; Kristensen, H.L. Controlled traffic farming increased crop yield, root growth, and nitrogen supply at two organic vegetable farms. Soil Tillage Res. 2019, 191, 117–130. [Google Scholar] [CrossRef]
- Smith, D.; Radcliffe, D.; Hargrove, W.; Clark, R.; Tollner, E. Soil compaction in double-cropped wheat and soybeans on an ultisol. Soil Sci. Soc. Am. J. 1987, 51, 183–186. [Google Scholar]
- Kozlowski, T. Soil compaction and growtAh of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Lozano-Baez, S.E.; Cooper, M.; Meli, P.; Ferraz, S.F.; Rodrigues, R.R.; Sauer, T.J. Land restoration by tree planting in the tropics and subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. For. Ecol. Manag. 2019, 444, 89–95. [Google Scholar] [CrossRef]
- Jourgholami, M.; Ghassemi, T.; Labelle, E.R. Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecol. Indic. 2019, 101, 102–110. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.; Cerdà, A. Soil erosion as an environmental concern in vineyards: The case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. Beverages 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Raper, R. Agricultural traffic impacts on soil. J. Terramech. 2005, 42, 259–280. [Google Scholar] [CrossRef]
- Jien, S.-H. Physical Characteristics of Biochars and Their Effects on Soil Physical Properties. In Biochar from Biomass and Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–35. [Google Scholar] [CrossRef]
- Taylor, H.M.; Gardner, H.R. Penetration of cotton seedlingn taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci. 1963, 96, 153–156. [Google Scholar] [CrossRef]
- Lampurlanés, J.; Cantero-Martinez, C. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 2003, 95, 526–536. [Google Scholar] [CrossRef]
- Labelle, E.R.; Poltorak, B.J.; Jaeger, D. The role of brush mats in mitigating machine-induced soil disturbances: An assessment using absolute and relative soil bulk density and penetration resistance. Can. J. For. Res. 2019, 49, 164–178. [Google Scholar] [CrossRef]
- Tetsumura, T.; Yukinaga, H. Comparative rooting of shoot tips of four Japanese persimmon cultivars vs. shoots regenerated from roots cultured in vitro. HortScience 2000, 35, 940–944. [Google Scholar] [CrossRef]
- Jorajuria, D.; Draghi, L. The distribution of soil compaction with depth and the response of a perennial forage crop. J. Agric. Eng. Res. 1997, 66, 261–265. [Google Scholar] [CrossRef]
- López-Vicente, M.; Álvarez, S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surf. Process. Landf. 2018, 43, 1403–1415. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.D.; Cerdà, A. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surf. Process. Landf. 2018, 43, 2193–2206. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. Land Degrad. Dev. In press. [CrossRef]
- Pulido, M.; Barrena-González, J.; Alfonso-Torreño, A.; Robina-Ramírez, R.; Keesstra, S. The problem of water use in rural areas of southwestern Spain: A local perspective. Water 2019, 11, 1311. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Wu, G.-L. Soil and water conservation in agricultural and forestry systems. Water 2019, 11, 1937. [Google Scholar] [CrossRef] [Green Version]
- Sannigrahi, S.; Joshi, P.K.; Keesstra, S.; Paul, S.K.; Sen, S.; Roy, P.S.; Chakraborti, S.; Bhatt, S. Evaluating landscape capacity to provide spatially explicit valued ecosystem services for sustainable coastal resource management. Ocean Coast. Manag. 2019, 182. [Google Scholar] [CrossRef]
- Cai, Y.-B.; Li, H.-M.; Ye, X.-Y.; Zhang, H. Analyzing Three-Decadal Patterns of Land Use/Land Cover Change and Regional Ecosystem Services at the Landscape Level: Case Study of Two Coastal Metropolitan Regions, Eastern China. Sustainability 2016, 8, 773. [Google Scholar] [CrossRef] [Green Version]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Arunyawat, S.; Shrestha, R.P. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public. Health 2017, 14, 818. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.S.; Wang, Y.; Sutton, P.C.; Chakraborti, S.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
Year | Depth (cm) | Minimum (g cm−3) | Maximum (g cm−3) | Mean (g cm−3) | Range (g cm−3) | Median (g cm−3) | Standard Deviation (g cm−3) | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|---|
2016 | 0–6 | 0.95 | 1.03 | 0.99 | 0.08 | 0.99 | 0.015 | 1.59 |
6–12 | 1.01 | 1.09 | 1.05 | 0.08 | 1.05 | 0.017 | 1.61 | |
12–18 | 1 | 1.2 | 1.11 | 0.2 | 1.1 | 0.024 | 2.20 | |
18–24 | 1.1 | 1.24 | 1.14 | 0.14 | 1.14 | 0.020 | 1.76 | |
Average | 1.015 | 1.12 | 1.07 | 0.12 | 1.07 | 0.019 | 1.79 | |
2019 | 0–6 | 1.02 | 1.14 | 1.07 | 0.12 | 1.06 | 0.028 | 2.61 |
6–12 | 1.04 | 1.17 | 1.11 | 0.13 | 1.11 | 0.026 | 2.35 | |
12–18 | 1.07 | 1.2 | 1.14 | 0.13 | 1.14 | 0.025 | 2.22 | |
18–24 | 1.1 | 1.23 | 1.16 | 0.13 | 1.16 | 0.029 | 2.51 | |
Average | 1.05 | 1.18 | 1.12 | 0.12 | 1.11 | 0.027 | 2.42 | |
2016–2019 | 0–6 | 0 | 0.14 | 0.075 | 0.14 | 0.08 | 0.031 | 41.56 |
6–12 | −0.04 | 0.14 | 0.055 | 0.18 | 0.05 | 0.032 | 58.00 | |
12–18 | −0.07 | 0.16 | 0.038 | 0.23 | 0.04 | 0.033 | 88.01 | |
18–24 | −0.06 | 0.1 | 0.022 | 0.16 | 0.02 | 0.031 | 139.82 | |
Average | −0.04 | 0.13 | 0.047 | 0.17 | 0.04 | 0.031 | 81.84 |
Statistical Measures | Bd | ISUM |
---|---|---|
Sample size | 225 | 2160 |
Minimum (mm) | −0.55 | −339 |
Maximum (mm) | −23 | 114 |
Coefficient of variation (%) | 36.7 | −214.6 |
Mean (mm) | −11 | −18 |
Total range (mm) | 22.18 | 453 |
Median (mm) | −10 | −22 |
Standard deviation (mm) | 4.04 | 39 |
Correlation Coefficient | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2016–2019 (Bdt2–Bdt1) | 2019 (Bdt2) | 2016 (Bdt1) | ||||||||||
Depth (cm) | 0–6 | 6–12 | 12–18 | 18–24 | 0–6 | 6–1 | 12–18 | 18–24 | 0–6 | 6–12 | 12–18 | 18–24 |
ISUM | −0.06 | −0.26 | −0.10 | −0.04 | −0.50 | −0.95 | −0.71 | −0.79 | −0.7 | −0.60 | −0.54 | −0.87 |
Statistical Measures | Raster Map | Measured Data | ||
---|---|---|---|---|
Bd | ISUM | Bd | ISUM | |
Sample size | - | - | 225 | 2160 |
Minimal value (mm) | −0.57 | −243 | −0.55 | −339 |
Maximum value (mm) | −23 | 113 | −23 | 114 |
Mean (mm) | −12 | −14 | −11 | −18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, E.; Rodrigo-Comino, J.; Terol, E.; Mora-Navarro, G.; Marco da Silva, A.; N. Daliakopoulos, I.; Khosravi, H.; Pulido Fernández, M.; Cerdà, A. Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods. Agriculture 2020, 10, 266. https://doi.org/10.3390/agriculture10070266
Moradi E, Rodrigo-Comino J, Terol E, Mora-Navarro G, Marco da Silva A, N. Daliakopoulos I, Khosravi H, Pulido Fernández M, Cerdà A. Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods. Agriculture. 2020; 10(7):266. https://doi.org/10.3390/agriculture10070266
Chicago/Turabian StyleMoradi, Ehsan, Jesús Rodrigo-Comino, Enric Terol, Gaspar Mora-Navarro, Alexandre Marco da Silva, Ioannis N. Daliakopoulos, Hassan Khosravi, Manuel Pulido Fernández, and Artemi Cerdà. 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods" Agriculture 10, no. 7: 266. https://doi.org/10.3390/agriculture10070266