Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment-Material Description
2.2. Experiment Design
2.3. Plant Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil, Amendments, and Treatment Properties
3.2. Plant Responses and Tissue Nutrient Concentration
4. Discussion
4.1. Effect of Amendment Application on Soil Properties
4.2. Amendment Influence on Maize Growth
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Synergistic effects of biochar and inorganic fertiliser on maize (zea mays) yield in an alfisol under drip irrigation. Soil Tillage Res. 2017, 174, 214–220. [Google Scholar] [CrossRef]
- Deenik, J.L.; McClellan, T.; Uehara, G.; Antal, M.J.; Campbell, S. Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, B.L.; Meszaros, I.; Downie, C.A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Zhang, M.; Ok, Y.S. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manag. 2014, 5, 255–257. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A Synthesis of its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012, 41, 973. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Ding, W.; Pullammanappallil, P.; Zimmerman, A.R.; Cao, X. Enhanced Lead Sorption by Biochar Derived from Anaerobically Digested Sugarcane Bagasse. Sep. Sci. Technol. 2011, 46, 1950–1956. [Google Scholar] [CrossRef]
- Upadhyay, K.P.; George, D.; Swift, R.S.; Galea, V. The Influence of Biochar on Growth of Lettuce and Potato. J. Integr. Agric. 2014, 13, 541–546. [Google Scholar] [CrossRef]
- Calamai, A.; Palchetti, E.; Masoni, A.; Marini, L.; Chiaramonti, D.; Dibari, C.; Brilli, L. The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens L’Hér.) Productivity and Essential Oil Quality. Agronomy 2019, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237–238, 105–116. [Google Scholar] [CrossRef]
- Nelissen, V.; Ruysschaert, G.; Manka’Abusi, D.; D’Hose, T.; De Beuf, K.; Al-Barri, B.; Cornelis, W.; Boeckx, P. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur. J. Agron. 2015, 62, 65–78. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.; Cruse, R.M.; Trabue, S.; Heaton, E. Germination Tests for Assessing Biochar Quality. J. Environ. Qual. 2012, 41, 1014. [Google Scholar] [CrossRef] [Green Version]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; Melo, I.C.N.A.; de Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [Green Version]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Scott, H.; Ponsonby, D.; Atkinson, C.J. Biochar: An improver of nutrient and soil water availability—What is the evidence? CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2014, 9, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.M.; Pettorali, M.; Nistri, R.; Chiaramonti, D. Mass and energy balances of an autothermal pilot carbonization unit. Biomass Bioenergy 2019, 120, 144–155. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus, Methods of Soil Analysis, 2nd ed.; ASA and SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Ahmedna, M.; Marshall, W.; Rao, R. Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour. Technol. 2000, 71, 113–123. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P.; Heiberger, R.M.; Schuetzenmeister, A.; Scheibe, S.; Hothorn, M.T. Package ‘Multcomp’. Available online: http://cran.stat.sfu.ca/web/packages/multcomp/multcomp (accessed on 10 November 2019).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefaniuk, M.; Oleszczuk, P. Characterization of biochars produced from residues from biogas production. J. Anal. Appl. Pyrolysis 2015, 115, 157–165. [Google Scholar] [CrossRef]
- Palchetti, E.; Calamai, A.; Verdi, L.; Masoni, A.; Marini, L.; Chiaramonti, D. Preliminary screening of agricultural feedstocks for anaerobic digestion. Adv. Hortic. Sci. 2019, 33, 333–344. [Google Scholar] [CrossRef]
- Wiedner, K.; Rumpel, C.; Steiner, C.; Pozzi, A.; Maas, R.; Glaser, B. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 2013, 59, 264–278. [Google Scholar] [CrossRef]
- Pituello, C.; Francioso, O.; Simonetti, G.; Pisi, A.; Torreggiani, A.; Berti, A.; Morari, F. Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediments 2015, 15, 792–804. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Chong, C.; Rinker, D.L. Use of Spent Mushroom Substrate for Growing Containerized Woody Ornamentals: An Overview. Compost Sci. Util. 1994, 2, 45–53. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef]
- Gundale, M.J.; DeLuca, T.H. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol. Fertil. Soils 2006, 43, 303–311. [Google Scholar] [CrossRef]
- Bourke, J.; Manley-Harris, M.; Fushimi, C.; Dowaki, K.; Nunoura, T.; Antal, M.J. Do All Carbonized Charcoals Have the Same Chemical Structure? A Model of the Chemical Structure of Carbonized Charcoal. Ind. Eng. Chem. Res. 2007, 46, 5954–5967. [Google Scholar] [CrossRef]
- Huisman, D.J.; Braadbaart, F.; van Wijk, I.M.; van Os, B.J.H. Ashes to ashes, charcoal to dust: Micromorphological evidence for ash-induced disintegration of charcoal in Early Neolithic (LBK) soil features in Elsloo (The Netherlands). J. Archaeol. Sci. 2012, 39, 994–1004. [Google Scholar] [CrossRef]
- Antal, J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Am. Chem. Soc. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Crombie, K.; Mašek, O.; Sohi, S.P.; Brownsort, P.; Cross, A. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 2013, 5, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Raveendran, K.; Ganesh, A.; Khilar, K.C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 1995, 74, 1812–1822. [Google Scholar] [CrossRef]
- European Biochar Certificate. Guidelines for Biochar Production; Ithaka Institute: Arbaz, Switzerland, 2012; Volume 4.2. [Google Scholar]
- Khan, S.; Waqas, M.; Ding, F.; Shamshad, I.; Arp, H.P.H.; Li, G. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J. Hazard. Mater. 2015, 300, 243–253. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.-E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Al-Wabel, M.; et al. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Haider, G.; Koyro, H.W.; Azam, F.; Steffens, D.; Müller, C.; Kammann, C. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 2014, 395, 141–157. [Google Scholar] [CrossRef]
- Ahmed, F.; Arthur, E.; Plauborg, F.; Andersen, M.N. Biochar Effects on Maize Physiology and Water Capacity of Sandy Subsoil. Mech. Agric. Conserv. Resour. 2016, 6, 8–13. [Google Scholar]
- Partey, S.T.; Preziosi, R.F.; Robson, G.D. Short-Term Interactive Effects of Biochar, Green Manure, and Inorganic Fertilizer on Soil Properties and Agronomic Characteristics of Maize. Agric. Res. 2014, 3, 128–136. [Google Scholar] [CrossRef]
- Deenik, J.; Mcclellan, A.T.; Uehara, G. Biochar volatile matter content effects on plant growth and nitrogen transformations in a tropical soil. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 4–5 March 2009; Volume 8, pp. 26–39. [Google Scholar]
- Rondon, M.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol. Fert. Soils 2007, 43, 688–708. [Google Scholar] [CrossRef]
- Knowles, O.A.; Robinson, B.H.; Contangelo, A.; Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 2011, 409, 3206–3210. [Google Scholar] [CrossRef]
- Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, N.S. Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil Sci. Soc. Am. J. 2010, 74, 852. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- de Boer, H.C. Co-digestion of Animal Slurry Can Increase Short-Term Nitrogen Recovery by Crops. J. Environ. Qual. 2008, 37, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Laboski, C.A.M.; Earhart, S.M.; Baxter, C.A. Evaluation of nitrogen availability from raw and treated dairy manures. In Proceedings of the 19th World Congress of Soil Science, Soil solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Grigatti, M.; Cavani, L.; Marzadori, C. Recycling of Dry-Batch Digestate as Amendment: Soil C and N Dynamics and Ryegrass Nitrogen Utilization Efficiency. Waste Biomass Valorization 2014, 5, 823. [Google Scholar] [CrossRef]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land Summary-Zusammenfassung. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Caruso, C.; Sambo, P.; Borin, M. Effects of digestate solid fraction fertilisation on yield and soil carbon dioxide emission in a horticulture succession. Ital. J. Agron. 2017, 11, 116–123. [Google Scholar] [CrossRef] [Green Version]
Treatment | ||||
---|---|---|---|---|
BSD | SD | BC | ||
pH | 8.48 ± 0.10 | 7.12 ± 0.07 | 8.17 ± 0.06 | |
EC | 6.86 ± 0.12 | 6.21 ± 0.06 | 6.49 ± 0.14 | |
Fixed C | % | 45.39 ± 0.95 | NA | 60.13 ± 1.27 |
Ash | 38.82 ± 0.61 | NA | 2.75 ± 0.04 | |
VM | 15.79 ± 0.18 | NA | 37.12 ± 0.68 | |
C | g/kg | 521.66 ± 3.76 | 385.78 ± 3.30 | 731.57 ± 4.66 |
N | 13.85 ± 0.36 | 12.15 ± 0.28 | 7.51 ± 0.19 | |
P | 18.16 ± 0.42 | 8.08 ± 0.20 | 5.75 ± 0.15 | |
K | 28.32 ± 0.45 | 13.72 ± 0.16 | 9.53 ± 0.09 | |
Ca | 39.19 ± 0.57 | 22.05 ± 0.26 | 17.98 ± 0.22 | |
Mg | 8.53 ± 0.25 | 3.78 ± 0.16 | 4.38 ± 0.08 | |
Na | 1.31 ± 0.07 | 0.93 ± 0.04 | 0.94 ± 0.01 | |
S | ND | 2.93 ± 0.04 | 0.78 ± 0.03 | |
Fe | 1.93 ± 0.03 | 0.99 ± 0.03 | 1.27 ± 0.05 | |
Pb | mg/kg | 1.07 ± 0.04 | 1.32 ± 0.13 | 1.29 ± 0.04 |
Mn | 444.61 ± 4.26 | 160.73 ± 3.45 | 152.73 ± 2.63 | |
Cu | 64.75 ± 1.76 | 35.07 ± 1.26 | 43.79 ± 1.03 | |
Zn | 387.2 ± 4.34 | 176.1 ± 2.60 | 225.4 ± 2.55 | |
Cr | 14.15 ± 0.42 | 7.53 ± 0.25 | 9.53 ± 0.47 | |
Cd | 0.28 ± 0.01 | 0.05 ± 0.00 | 0.54 ± 0.04 |
g/kg | mg/kg | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | pH | EC | N | P | K | Ca | Mg | Na | S | Fe | Pb | Mn | Cu | Zn | Cr | Cd |
C + BSD 1 % | 7.25 ± 0.04ab | 0.59 ± 0.01a | 1.79 ± 0.09 | 0.93 ± 0.04 | 7.75 ± 0.08 | 1.59 ± 0.01d | 0.54 ± 0.02b | 0.52 ± 0.01b | 1.95 ± 0.07 | 3.15 ± 0.03b | 1.45 ± 0.09 | 53.47 ± 0.54b | 73.94 ± 2.92 | 304.86 ± 3.11b | 12.67 ± 0.80 | 5.43±1.07 |
C + BSD2 % | 7.29 ± 0.01a | 0.63 ± 0.02a | 1.91 ± 0.07 | 0.91 ± 0.05 | 8.04 ± 0.03 | 1.78 ± 0.03b | 0.63 ± 0.01a | 0.54 ± 0.02b | 1.72 ± 0.06 | 3.28 ± 0.03ab | 0.97 ± 0.08 | 52.83 ± 0.74b | 75.34 ± 5.30 | 313.23 ± 2.77b | 13.59 ± 0.54 | 4.79±1.16 |
C + BSD3 % | 7.32 ± 0.03a | 0.61 ± 0.02a | 2.02 ± 0.10 | 1.04 ± 0.05 | 7.98 ± 0.08 | 1.93 ± 0.02a | 0.61 ± 0.01a | 0.69 ± 0.01a | 2.08 ± 0.04 | 3.35 ± 0.02a | 1.61 ± 0.06 | 57.91 ± 0.84a | 63.47 ± 2.73 | 354.74 ± 3.04a | 13.28 ± 0.53 | 5.67±0.54 |
C + SD 1 % | 6.96 ± 0.02d | 0.41 ± 0.02c | 1.95 ± 0.08 | 0.88 ± 0.03 | 7.84 ± 0.06 | 1.52 ± 0.02d | 0.49 ± 0.01c | 0.41 ± 0.01d | 1.65 ± 0.08 | 2.75 ± 0.02d | 1.64 ± 0.08 | 49.63 ± 1.48d | 58.26 ± 2.96 | 263.69 ± 5.38c | 13.68 ± 0.69 | 5.16±0.61 |
C + SD 2 % | 7.06 ± 0.00c | 0.43 ± 0.01c | 1.88 ± 0.08 | 0.95 ± 0.06 | 7.64 ± 0.06 | 1.62 ± 0.02d | 0.50 ± 0.00c | 0.44 ± 0.01cd | 1.85 ± 0.08 | 2.93 ± 0.02c | 0.81 ± 0.05 | 50.17 ± 1.17cd | 32.37 ± 2.83 | 275.32 ± 4.16c | 12.98 ± 0.66 | 6.87±0.57 |
C + SD 3 % | 7.03 ± 0.01c | 0.48 ± 0.03bc | 1.98 ± 0.06 | 0.87 ± 0.04 | 7.79 ± 0.04 | 1.68 ± 0.01c | 0.53 ± 0.01b | 0.46 ± 0.01cd | 2.53 ± 0.09 | 2.95 ± 0.02c | 1.13 ± 0.06 | 51.29 ± 1.07c | 77.43 ± 3.07 | 288.96 ± 5.01b | 11.87 ± 0.73 | 4.56±0.34 |
C + BC 1 % | 7.21 ± 0.01b | 0.49 ± 0.02bc | 1.52 ± 0.12 | 0.97 ± 0.04 | 7.96 ± 0.06 | 1.61 ± 0.01d | 0.51 ± 0.02bc | 0.49 ± 0.02bc | 2.14 ± 0.09 | 2.87 ± 0.03cd | 1.39 ± 0.08 | 47.49 ± 1.59e | 32.74 ± 4.69 | 189.76 ± 4.89d | 11.57 ± 0.88 | 5.54±0.39 |
C + BC 2 % | 7.19 ± 0.01b | 0.51 ± 0.01b | 1.75 ± 0.07 | 0.88 ± 0.04 | 7.83 ± 0.05 | 1.70 ± 0.04c | 0.65 ± 0.01a | 0.47 ± 0.01c | 2.37 ± 0.08 | 3.11 ± 0.01b | 0.57 ± 0.09 | 48.43 ± 1.72e | 41.93 ± 2.06 | 232.31 ± 5.58d | 13.06 ± 0.77 | 6.91±1.14 |
C + BC 3 % | 7.27 ± 0.04ab | 0.53 ± 0.02b | 1.78 ± 0.08 | 0.98 ± 0.04 | 8.04 ± 0.12 | 1.73 ± 0.03c | 0.64 ± 0.01a | 0.51 ± 0.01b | 2.43 ± 0.08 | 3.08 ± 0.02b | 1.43 ± 0.08 | 48.67 ± 0.95e | 98.45 ± 4.74 | 239.87 ± 4.09c | 14.94 ± 0.91 | 5.64±1.09 |
C | 7.05 ± 0.01c | 0.45 ± 0.01c | 1.69 ± 0.06 | 1.01 ± 0.03 | 7.91 ± 0.10 | 1.54 ± 0.02e | 0.28 ± 0.01d | 0.38 ± 0.00e | 2.13 ± 0.06 | 2.76 ± 0.01d | 0.36 ± 0.05 | 13.52 ± 0.63f | 65.18 ± 2.53 | 142.52 ± 5.22e | 14.21 ± 0.43 | 5.47±0.83 |
F-test | * | ** | n.s | n.s | n.s | * | * | ** | n.s | ** | n.s | ** | n.s | * | n.s | n.s |
Treatment | Plant Height (cm) | Stem Diameter (mm) | Biomass Dry Weight (g) | Seed Number per Ear (n.) | Seed Weight per Ear (g) |
---|---|---|---|---|---|
C + BSD 1% | 89.61 ± 2.28ab | 15.44 ± 0.16b | 114.02 ± 3.49b | 198.29 ± 3.27b | 46.35 ± 4.13a–c |
C + BSD2% | 96.00 ± 2.60a | 15.78 ± 0.19ab | 110.42 ± 4.53b | 211.86 ± 5.58a | 50.52 ± 2.11ab |
C + BSD3% | 99.13 ± 1.83a | 16.53 ± 0.14a | 121.63 ± 3.05a | 209.68 ± 3.67a | 56.20 ± 2.58a |
C + SD 1% | 81.45 ± 1.34c | 13.31 ± 0.21c–e | 101.30 ± 3.16c | 177.95 ± 3.16c | 41.47 ± 1.79bc |
C + SD 2% | 82.38 ± 1.62c | 13.98 ± 0.14b–d | 109.57 ± 1.58bc | 183.43 ± 2.52bc | 40.42 ± 2.54bc |
C + SD 3% | 86.44 ± 1.69b | 14.33 ± 0.27bc | 110.09 ± 2.76b | 192.86 ± 4.49b | 46.37 ± 4.86a–c |
C + BC 1% | 68.14 ± 1.57d | 11.75 ± 0.13e | 92.07 ± 3.28d | 163.71 ± 3.30d | 35.59 ± 3.44c |
C + BC 2% | 69.83 ± 1.24d | 12.14 ± 0.09e | 93.59 ± 0.42d | 167.14 ± 5.01d | 34.19 ± 3.90c |
C + BC 3% | 74.81 ± 2.23cd | 12.61 ± 0.27c–e | 95.77 ± 0.34d | 169.72 ± 2.43d | 35.25 ± 2.50c |
C | 76.33 ± 1.35cd | 12.42 ± 0.17cd | 97.88 ± 0.10cd | 174.51 ± 2.27c | 42.59 ± 2.32bc |
F-test | ** | ** | ** | * | * |
Plant-Height (cm) Evolution Over Ten Days | |||||||
Treatment | 30 DAG | 40 DAG | 50 DAG | 60 DAG | 70 DAG | 80 DAG | 90 DAG |
C + BSD 1 % | 14.25±0.56b | 18.51 ± 0.96b | 27.53 ± 1.11a–c | 40.15 ± 1.07ab | 49.84 ± 2.20a–c | 64.16 ± 2.68a–c | 89.61 ± 2.28ab |
C + BSD2 % | 14.79 ± 0.77ab | 20.45 ± 1.64a | 28.72 ± 0.60ab | 45.35 ± 1.70a | 55.21 ± 1.31ab | 68.23 ± 1.77ab | 96.00 ± 2.60a |
C + BSD3 % | 15.45 ± 0.74a | 21.57 ± 0.98a | 30.87 ± 0.64a | 46.58 ± 1.40a | 56.83 ± 1.19a | 69.68 ± 2.09a | 99.13 ± 1.83a |
C + SD 1 % | 12.17 ± 0.83cd | 16.97 ± 0.76c–e | 22.94 ± 1.16d | 34.37 ± 2.08b–d | 49.04 ± 2.29b–d | 58.14 ± 2.22c | 81.45 ± 1.34c |
C + SD 2 % | 12.64 ± 0.74c | 17.57 ± 1.07c | 24.69 ± 0.60cd | 36.19 ± 1.23bc | 51.00 ± 2.05a–c | 62.13 ± 1.61bc | 82.38 ± 1.62c |
C + SD 3 % | 12.57 ± 1.20c | 17.83 ± 1.72bc | 26.54 ± 1.17b–d | 38.75 ± 1.08b | 53.42 ± 2.22a–c | 63.50 ± 2.30a–c | 86.44±1.69b |
C + BC 1 % | 11.81 ± 0.88de | 15.78 ± 0.90e | 22.14 ± 0.61d | 27.31 ± 0.87d | 35.60 ± 1.74e | 47.78 ± 1.45e | 68.14 ± 1.57d |
C + BC 2 % | 11.25 ± 1.01e | 15.98 ± 0.99e | 23.02 ± 0.92d | 29.57 ± 1.58d | 36.73 ± 1.12e | 48.37 ± 2.05e | 69.83 ± 1.24d |
C + BC 3 % | 11.94 ± 1.43c–e | 16.75 ± 1.09de | 24.02 ± 0.69cd | 31.95 ± 1.14cd | 37.47 ± 1.56de | 51.36 ± 2.68de | 74.81 ± 2.23cd |
C | 12.37 ± 0.80cd | 17.78 ± 1.22bc | 25.19 ± 1.01c | 33.15 ± 0.95c | 43.15 ± 1.50de | 55.23 ± 1.36d | 76.33 ± 1.35cd |
F-test | ** | ** | ** | ** | ** | ** | ** |
Stem-Diameter (mm) Evolution Over Ten Days | |||||||
Treatment | 30 DAG | 40 DAG | 50 DAG | 60 DAG | 70 DAG | 80 DAG | 90 DAG |
C + BSD 1 % | 4.66 ± 0.13ab | 6.51 ± 0.20a–c | 9.13 ± 0.15b | 11.45 ± 0.16b | 12.39 ± 0.06b | 13.71 ± 0.14b | 15.44 ± 0.16b |
C + BSD 2 % | 4.70 ± 0.21ab | 7.49 ± 0.16ab | 9.73 ± 0.20ab | 11.75 ± 0.17ab | 12.68 ± 0.18ab | 14.49 ± 0.19ab | 15.78 ± 0.19ab |
C + BSD 3 % | 5.14 ± 0.19a | 7.95 ± 0.16a | 10.7 ± 0.13a | 12.89 ± 0.16a | 13.38 ± 0.12a | 14.76 ± 0.21a | 16.53 ± 0.14a |
C + SD 1 % | 4.12 ± 0.19bc | 5.65 ± 0.17c | 7.43 ± 0.16d | 10.42 ± 0.20c | 11.68 ± 0.06b–d | 12.31 ± 0.28b–d | 13.31 ± 0.21c–e |
C + SD 2 % | 4.13 ± 0.21bc | 6.02 ± 0.11bc | 8.16 ± 0.19cd | 10.37 ± 0.19c | 11.65 ± 0.23b–d | 12.18 ± 0.19cd | 13.98 ± 0.14b–d |
C + SD 3 % | 4.03 ± 0.15c | 6.35 ± 0.13b | 9.04 ± 0.17b | 10.68 ± 0.16c | 12.06 ± 0.23bc | 12.94 ± 0.06c | 14.33 ± 0.27bc |
C + BC 1 % | 3.77 ± 0.11d | 5.09 ± 0.16d | 7.32 ± 0.15d | 8.85 ± 0.09f | 9.98 ± 0.11d | 10.93 ± 0.10e | 11.75 ± 0.13e |
C + BC 2 % | 3.89 ± 0.06c | 5.82 ± 0.15bc | 7.55 ± 0.09d | 9.12 ± 0.12e | 10.45 ± 0.13cd | 11.45 ± 0.15e | 12.14 ± 0.09e |
C + BC 3 % | 4.06 ± 0.16c | 5.91 ± 0.16bc | 7.48 ± 0.12d | 9.78 ± 0.09de | 11.01 ± 0.20cd | 12.09 ± 0.16d | 12.61 ± 0.27c–e |
C | 4.28 ± 0.13b | 6.26 ± 0.08b | 8.47 ± 0.11c | 10.12 ± 0.05cd | 11.25 ± 0.17c | 11.98 ± 0.18d | 12.42 ± 0.17cd |
F-test | * | ** | ** | ** | ** | ** | ** |
g/kg | mg/kg | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | N | P | K | Ca | Mg | Na | S | Fe | Pb | Mn | Cu | Zn | Cr | Cd |
C + BSD 1 % | 20.38 ± 0.63 | 1.45 ± 0.10 | 4.33 ± 0.16 | 3.49 ± 0.08ab | 1.90 ± 0.01b | 0.95 ± 0.04b | 8.97 ± 0.06 | 236.34 ± 4.15c | 4.83 ± 0.42 | 93.11 ± 1.22ab | 4.73 ± 1.25 | 125.5 ± 3.02 | 4.73 ± 0.10 | 3.37 ± 0.45 |
C + BSD2 % | 21.61 ± 1.55 | 1.48 ± 0.08 | 4.22 ± 0.17 | 3.86 ± 0.01a | 2.07 ± 0.01a | 1.19 ± 0.04a | 7.69 ± 0.60 | 273.23 ± 3.58b | 4.58 ± 0.35 | 96.19 ± 1.01a | 5.05 ± 0.86 | 128.7 ± 2.86 | 3.88 ± 0.39 | 3.57 ± 0.40 |
C + BSD3 % | 21.27 ± 1.43 | 1.57 ± 0.16 | 4.79 ± 0.11 | 3.84 ± 0.01a | 1.96 ± 0.05ab | 1.22 ± 0.03a | 8.29 ± 0.47 | 293.33 ± 4.85a | 4.84 ± 0.54 | 96.33 ± 0.58a | 5.20 ± 0.50 | 128.4 ± 4.28 | 4.15 ± 0.92 | 3.38 ± 0.34 |
C + SD 1 % | 18.50 ± 0.97 | 1.41 ± 0.10 | 4.04 ± 0.20 | 2.45 ± 0.05d | 1.64 ± 0.05cd | 1.00 ± 0.02b | 8.42 ± 0.42 | 163.01 ± 4.80ef | 4.91 ± 0.43 | 88.21 ± 3.51a–c | 3.75 ± 0.67 | 122.2 ± 1.83 | 3.88 ± 0.54 | 3.46 ± 0.47 |
C + SD 2 % | 20.72 ± 1.45 | 1.44 ± 0.15 | 4.12 ± 0.10 | 2.58 ± 0.06cd | 1.76 ± 0.06bc | 1.00 ± 0.03b | 7.10 ± 0.45 | 155.66 ± 2.00f | 4.37 ± 0.57 | 91.57 ± 2.15ab | 3.71 ± 1.06 | 123.1 ± 2.43 | 4.40 ± 0.31 | 3.14 ± 0.34 |
C + SD 3 % | 19.54 ± 1.70 | 1.42 ± 0.17 | 4.16 ± 0.16 | 2.67 ± 0.08cd | 1.95 ± 0.05ab | 1.08 ± 0.06ab | 6.54 ± 0.41 | 158.66 ± 3.43f | 4.63±0.39 | 94.95 ± 1.55a | 3.99 ± 0.16 | 125.0 ± 1.75 | 4.56 ± 0.62 | 3.45 ± 0.48 |
C + BC 1 % | 18.94 ± 0.91 | 1.43 ± 0.15 | 3.79 ± 0.10 | 2.43 ± 0.03d | 1.44 ± 0.04d | 0.98 ± 0.05b | 8.65 ± 0.31 | 168.33 ± 1.20e | 4.35 ± 0.50 | 84.12 ± 2.16bc | 3.91 ± 0.71 | 118.0 ± 2.44 | 4.60 ± 0.89 | 3.13 ± 0.16 |
C + BC 2 % | 19.79 ± 0.66 | 1.44 ± 0.14 | 4.00 ± 0.12 | 2.86 ± 0.06cd | 1.55 ± 0.07cd | 0.99 ± 0.04b | 7.26 ± 0.49 | 195.66 ± 3.52d | 4.50 ± 0.40 | 83.07 ± 2.47bc | 3.54 ± 0.95 | 120.9 ± 3.23 | 4.35 ± 0.98 | 3.30 ± 0.36 |
C + BC 3 % | 17.87 ± 1.66 | 1.46 ± 0.19 | 3.99 ± 0.19 | 2.64 ± 0.08cd | 1.51 ± 0.06cd | 0.95 ± 0.05b | 7.63 ± 0.43 | 193.14 ± 3.30d | 4.30 ± 0.42 | 81.22 ± 1.82bc | 3.85 ± 0.52 | 118.5 ± 4.41 | 3.65 ± 0.45 | 3.42 ± 0.50 |
C | 19.73 ± 1.06 | 1.52 ± 0.20 | 4.08 ± 0.12 | 2.07 ± 0.03e | 1.54 ± 0.06cd | 0.97 ± 0.04b | 8.03 ± 0.42 | 112.24 ± 1.12g | 3.79 ± 0.52 | 78.23 ± 3.18c | 3.75 ± 0.56 | 117.2 ± 5.70 | 4.28 ± 0.14 | 3.57 ± 0.41 |
F-test | n.s | n.s | n.s | ** | ** | * | n.s | ** | n.s | * | n.s | n.s | n.s | n.s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calamai, A.; Chiaramonti, D.; Casini, D.; Masoni, A.; Palchetti, E. Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth. Agriculture 2020, 10, 158. https://doi.org/10.3390/agriculture10050158
Calamai A, Chiaramonti D, Casini D, Masoni A, Palchetti E. Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth. Agriculture. 2020; 10(5):158. https://doi.org/10.3390/agriculture10050158
Chicago/Turabian StyleCalamai, Alessandro, David Chiaramonti, David Casini, Alberto Masoni, and Enrico Palchetti. 2020. "Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth" Agriculture 10, no. 5: 158. https://doi.org/10.3390/agriculture10050158