Biopore-Induced Deep Root Traits of Two Winter Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatments
2.3. Agronomy
2.4. Biopore Investigation
2.5. Root Data Collection
2.5.1. The Profile Wall Method
2.5.2. Soil Monolith Sampling
2.5.3. Statistical Analysis
3. Results
3.1. Biopore Size Distribution as Affected by Pre-Cropping
3.2. Root Growth Inside Biopores and in the Bulk Soil
3.3. Root Traits Affected by Crop Sequence
3.4. Principal Component Analysis
4. Discussion
4.1. Contrasting Root Traits between Barley and Canola
4.2. Consistent Response towards Increased Biopore Density
4.3. Contrasting Response towards Increased Biopore Density
4.4. Classification of Biopore Effects
4.5. Biopore Utilization in Arable Fields
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Thorup-Kristensen, K.; Halberg, N.; Nicolaisen, M.; Olesen, J.E.; Crews, T.E.; Hinsinger, P.; Kirkegaard, J.; Pierret, A.; Dresbøll, D.B. Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends Plant Sci. 2020, 25, 406–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorup-Kristensen, K.; Cortasa, M.S.; Loges, R. Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses? Plant Soil 2009, 322, 101–114. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Thorup-Kristensen, K. Does earlier sowing of winter wheat improve root growth and N uptake? Field Crop. Res. 2016, 196, 10–21. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 2001, 230, 185–195. [Google Scholar] [CrossRef]
- Robertson, M.; Kirkegaard, J.; Rebetzke, G.; Llewellyn, R.; Wark, T. Prospects for yield improvement in the Australian wheat industry: A perspective. Food Energy Secur. 2016, 5, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.R.; Lilley, J.M.; Trevaskis, B.; Flohr, B.M.; Peake, A.; Fletcher, A.; Zwart, A.B.; Gobbett, D.L.; Kirkegaard, J.A. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Chang. 2019, 9, 244–247. [Google Scholar] [CrossRef]
- Han, E.; Kautz, T.; Perkons, U.; Lüsebrink, M.; Pude, R.; Köpke, U. Quantification of soil biopore density after perennial fodder cropping. Plant Soil 2015, 394, 73–85. [Google Scholar] [CrossRef]
- Han, E.; Kautz, T.; Perkons, U.; Uteau, D.; Peth, S.; Huang, N.; Horn, R.; Köpke, U. Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biol. Fertil. Soils 2015, 51, 847–856. [Google Scholar] [CrossRef]
- Perkons, U.; Kautz, T.; Uteau, D.; Peth, S.; Geier, V.; Thomas, K.; Holz, K.L.; Athmann, M.; Pude, R.; Köpke, U. Root-length densities of various annual crops following crops with contrasting root systems. Soil Tillage Res. 2014, 137, 50–57. [Google Scholar] [CrossRef]
- Rich, S.M.; Watt, M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. J. Exp. Bot. 2013, 64, 1193–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, A.; Tennant, D. Root length density and water uptake in cereals and grain legumes: How well are they correlated. Aust. J. Agric. Res. 1987, 38, 513–527. [Google Scholar] [CrossRef]
- Athmann, M.; Kautz, T.; Pude, R.; Köpke, U. Root growth in biopores—Evaluation with in situ endoscopy. Plant Soil 2013, 371, 179–190. [Google Scholar] [CrossRef]
- Materechera, S.A.; Alston, A.M.; Kirby, J.M.; Dexter, A.R. Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 1992, 144, 297–303. [Google Scholar] [CrossRef]
- Claassen, N.; Jungk, A. Kaliumdynamik im wurzelnahen Boden in Beziehung zur Kaliumaufnahme von Maispflanzen. J. Plant Nutr. Soil Sci. 1982, 145, 513–525. [Google Scholar] [CrossRef]
- Han, E.; Kautz, T.; Köpke, U. Precrop root system determines root diameter of subsequent crop. Biol. Fertil. Soils 2015, 52, 113–118. [Google Scholar] [CrossRef]
- Bengough, G.A. Root elongation is restricted by axial but not by radial pressures: So what happens in field soil? Plant Soil 2012, 360, 15–18. [Google Scholar] [CrossRef]
- Bell, D.L.; Sultan, S.E. Dynamic phenotypic plasticity for root growth in Polygonum: A comparative study. Am. J. Bot. 1999, 86, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Fransen, B.; Blijjenberg, J.; De Kroon, H. Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant Soil 1999, 211, 179–189. [Google Scholar] [CrossRef]
- Bodner, G.; Leitner, D.; Nakhforoosh, A.; Sobotik, M.; Moder, K.; Kaul, H.-P.; Bodner, G.; Leitner, D.; Nakhforoosh, A.; Sobotik, M.; et al. A statistical approach to root system classification. Front. Plant Sci. 2013, 4, 292. [Google Scholar] [CrossRef] [Green Version]
- Böhm, W. Profile wall methods. In Methods of Studying Root Systems; Springer: Berlin/Heidelberg, Germany, 1979; Volume 33, pp. 48–60. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; ISBN 978-0-387-98957-0. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. Package “lmerTest.” R Package. version 2020. Available online: https://github.com/runehaubo/lmerTestR (accessed on 12 December 2020).
- Pietola, L.; Alakukku, L. Root growth dynamics and biomass input by Nordic annual field crops. Agric. Ecosyst. Environ. 2005, 108, 135–144. [Google Scholar] [CrossRef]
- Atkinson, D. Root characteristics: Why and what to measure. In Root Methods; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Engels, C.; Neumann, G.; Gahoonia, T.S.; George, E.; Schenk, M. Assessing the ability of roots for nutrient acquisition. In Root Methods; Springer: Berlin/Heidelberg, Germany, 2000; pp. 403–459. [Google Scholar]
- Robinson, D.; Hodge, A.; Griffiths, B.S.; Fitter, A.H. Plant root proliferation in nitrogen–rich patches confers competitive advantage. Proc. R. Soc. B Boil. Sci. 1999, 266, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.J.; John, E.A. Distribution of roots in soil, and root foraging activity. In Root Ecology; De Kroon, H., Visser, E.J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–60. [Google Scholar]
- Eissenstat, D.M. On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytol. 1991, 118, 63–68. [Google Scholar] [CrossRef]
- Lynch, J.P. Root architecture and nutrient acquisition. In Nutrient Acquisition by Plants; Caldwell, M.M., Heldmaier, G., Jackson, R.B., Lange, O.L., Mooney, H.A., Schulze, E.D., Sommer, U., Eds.; Springer: Chicago, IL, USA, 2005; pp. 147–183. [Google Scholar]
- Han, E.; Kautz, T.; Huang, N.; Köpke, U. Dynamics of plant nutrient uptake as affected by biopore-associated root growth in arable subsoil. Plant Soil 2016, 415, 145–160. [Google Scholar] [CrossRef]
- Stirzaker, R.J.; Passioura, J.B.; Wilms, Y. Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 1996, 185, 151–162. [Google Scholar] [CrossRef]
- Whiteley, G.M.; Dexter, A.R. Behavior of roots in cracks between soil peds. Plant Soil 1983, 74, 153–162. [Google Scholar] [CrossRef]
- Atwell, B.J. Physiological responses of lupin roots to soil compaction. Plant Soil 1988, 111, 277–281. [Google Scholar] [CrossRef]
- Atkinson, D. Influence of root system morphology and development on the need for fertilisers and the efficiency of use. In Crops as Enhancers of Nutrient Use; Baligar, V.C., Duncan, R., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 411–451. [Google Scholar]
- Classen, N.; Hendriks, L.; Jungk, A. Rubidium depletion of the soil-root interface by maize plants [Zea mays]. Z. Pflanz. Bodenkd. 1981, 144, 533–545. [Google Scholar]
- York, L.M.; Nord, E.A.; Lynch, J.P. Integration of root phenes for soil resource acquisition. Front. Plant Sci. 2013, 4, 355. [Google Scholar] [CrossRef] [Green Version]
- Volkmar, K.M. Effects of biopores on the growth and N-uptake of wheat at three levels of soil moisture. Can. J. Soil Sci. 1996, 76, 453–458. [Google Scholar] [CrossRef]
- Pierret, A.; Moran, C.; Pankhurst, C. Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 1999, 211, 51–58. [Google Scholar] [CrossRef]
- Passioura, J.B. Soil conditions and plant growth. Plant Cell Environ. 2002, 25, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Cresswell, H.; Kirkegaard, J. Subsoil amelioration by plant-roots—The process and the evidence. Soil Res. 1995, 33, 221–239. [Google Scholar] [CrossRef]
- Stewart, J.; Moran, C.; Wood, J. Macropore sheath: Quantification of plant root and soil macropore association. Plant Soil 1999, 211, 59–67. [Google Scholar] [CrossRef]
- Kautz, T.; Perkons, U.; Athmann, M.; Pude, R.; Köpke, U. Barley roots are not constrained to large-sized biopores in the subsoil of a deep Haplic Luvisol. Biol. Fertil. Soils 2013, 49, 959–963. [Google Scholar] [CrossRef]
- Urbatzka, P.; Graß, R.; Haase, T.; Schüler, C.; Heß, J. Fate of legume-derived nitrogen in monocultures and mixtures with cereals. Agric. Ecosyst. Environ. 2009, 132, 116–125. [Google Scholar] [CrossRef]
- Bakht, J.; Shafi, M.; Jan, M.T.; Shah, Z. Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticum aestivum L.) production. Soil Tillage Res. 2009, 104, 233–240. [Google Scholar] [CrossRef]
- Kristensen, H.; Thorup-Kristensen, K. Root Depth and Nitrogen Uptake from Deep Soil Layers in Organic Vegetable Production—A Preliminary Study. Acta Hortic. 2002, 571, 203–208. [Google Scholar] [CrossRef]
- Köpke, U.; Athmann, M.; Han, E.; Kautz, T. Optimising Cropping Techniques for Nutrient and Environmental Management in Organic Agriculture. Sustain. Agric. Res. 2015, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Kautz, T. Research on subsoil biopores and their functions in organically managed soils: A review. Renew. Agric. Food Syst. 2015, 30, 318–327. [Google Scholar] [CrossRef]
- Masle, J. Genetic Variation in the Effects of Root Impedance on Growth and Transpiration Rates of Wheat and Barley. Funct. Plant Biol. 1992, 19, 109–125. [Google Scholar] [CrossRef]
- Coleman, M.D. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil 2007, 299, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.H.; Stickland, T.R. Architectural Analysis of Plant-Root Systems. New Phytol. 1992, 121, 243–248. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [Green Version]
Crop Sequence | Pre-Cropping Phase | Post-Cropping Phase | ||
---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | |
Chicory-Barley | Chicory | Chicory | Spring wheat | Winter barley |
Chicory-Canola | Chicory | Chicory | Spring wheat | Winter canola |
Tall fescue-Barley | Tall fescue | Tall fescue | Spring wheat | Winter barley |
Tall fescue-Canola | Tall fescue | Tall fescue | Spring wheat | Winter canola |
Crops | Year | Date * | Growth Stage | DAS *** | Depth (cm) **** |
---|---|---|---|---|---|
Barley | 2013 | 10 April–11 April | Tillering | 188 | 150 |
24 April–25 April | Stem elongation | 202 | 200 | ||
13 May–15 May | Booting | 221 | 200 | ||
27 May–12 June | Anthesis ** | 235 | 200 | ||
19 June–24 June | Milk | 258 | 200 | ||
Canola | 2013 | 15 April–17 April | Stem elongation | 228 | 200 |
26 April–30 April | Flowering | 239 | 200 | ||
21 May–24 May | Development of fruit ** | 264 | 200 | ||
12 June–18 June | Ripening I | 286 | 200 | ||
26 June–2 July | Ripening II | 300 | 200 |
Root Traits | Pre-Crop Treatment (df = 1) | Post-Crop Species (df = 1) | Interaction (df = 1) |
---|---|---|---|
RLbiopore * | 6.382 (0.012) | 59.503 (<0.001) | 2.487 (0.115) |
RLbulk * | 0.779 (0.314) | 59.026 (<0.001) | 12.291 (<0.001) |
Maximum rooting depth | 10.729 (0.001) | 35.500 (<0.001) | 2.805 (0.094) |
RBM | 5.825 (0.017) | 87.725 (<0.001) | 0.012 (0.913) |
Root diameter | 203.391 (<0.001) | 272.701 (<0.001) | 68.289 (<0.001) |
SRL | 13.746 (<0.001) | 241.816 (<0.001) | 11.612 (<0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.; Athmann, M.; Han, E. Biopore-Induced Deep Root Traits of Two Winter Crops. Agriculture 2020, 10, 634. https://doi.org/10.3390/agriculture10120634
Huang N, Athmann M, Han E. Biopore-Induced Deep Root Traits of Two Winter Crops. Agriculture. 2020; 10(12):634. https://doi.org/10.3390/agriculture10120634
Chicago/Turabian StyleHuang, Ning, Miriam Athmann, and Eusun Han. 2020. "Biopore-Induced Deep Root Traits of Two Winter Crops" Agriculture 10, no. 12: 634. https://doi.org/10.3390/agriculture10120634