Nanoparticles as Potential Antivirals in Agriculture
Abstract
:1. Introduction
2. Current Options for Controlling Virus Diseases in Agriculture
3. Metallic Nanoparticles
4. Antiviral Activity of Metallic Nanoparticles
5. Antiviral Activity of MeNPs in Plants
6. Viral Inhibition via Plant Defense Induction Using NPs
6.1. Antioxidant System
6.2. Plant Hormones and Pathogenesis-Related Proteins
6.3. Secondary Metabolite Production
7. Effect of MeNPs as Biostimulants in Virus-Infected Plants
8. Nanoparticles against Plant Viral Pathogens
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
- Yih, T.C.; Al-Fandi, M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 2006, 97, 1184–1190. [Google Scholar] [CrossRef]
- Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73. [Google Scholar] [CrossRef] [Green Version]
- Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of Noble Metal-Based Nanoparticles in Medicine. Int. J. Mol. Sci. 2018, 19, 4031. [Google Scholar] [CrossRef] [Green Version]
- Asghari, F.; Jahanshiri, Z.; Imani, M.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Chapter 10—Antifungal nanomaterials: Synthesis, properties, and applications. In Nanobiomaterials in Antimicrobial Therapy—Applications of Nanobiomaterials; William Andrew Publishing: Kidlington, Oxford, UK, 2016; pp. 343–383. ISBN 978-0-323-42864-4. [Google Scholar]
- Morais, M.; Martins, V.; Steffens, D.; Pranke, P.; Costa, J.A. Biological Applications of Nanobiotechnology. J. Nanosci. Nanotechnol. 2014, 14, 1007–1017. [Google Scholar] [CrossRef]
- Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017, 4, 105–131. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Antibacterial Activity of Nanomaterials. Nanomaterials 2018, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Liu, C.; Fan, G.; Liu, C.; Sun, X. Preventing viral disease by ZnONPs through directly deactivating TMV and activating the plant immunity in Nicotiana benthamiana. Environ. Sci. Nano. 2019. [Google Scholar] [CrossRef]
- Halevas, E.; Pantazaki, A. Copper Nanoparticles as Therapeutic Anticancer Agents. Nanomed. Nanotechnol. J. 2018, 2, 119. [Google Scholar]
- Tripathi, M.; Kumar, S.; Kumar, A.; Tripathi, P.; Kumar, S. Agro-nanotechnology: A Future Technology for Sustainable Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 196–200. [Google Scholar]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Roossinck, M.J. Plant virus ecology. PLoS Pathog. 2013, 9, e1003304. [Google Scholar] [CrossRef]
- Bernardo, P.; Charles-Dominique, T.; Barakat, M.; Ortet, P.; Fernandez, E.; Filloux, D.; Hartnady, P.; Rebelo, T.A.; Cousins, S.R.; Mesleard, F.; et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J. 2018, 12, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, P.; Singla, K.; Rajbhar, M.; Singh, A.; Das, N.; Kumar, K. A systematic review of conventional and advanced approaches for the control of plant viruses. J. Appl. Biol. Biotechnol. 2019, 7, 89–98. [Google Scholar] [CrossRef]
- Hill, J.; Whitham, S. Control of Virus Diseases in Soybeans. Adv. Virus Res. 2014, 90, 355–390. [Google Scholar] [CrossRef]
- Almasi, M.A.; Almasi, G. Colorimetric immunocapture loop mediated isothermal amplification assay for detection of Impatiens necrotic spot virus (INSV) by GineFinderTM dye. Eur. J. Plant Pathol. 2018, 150, 533–538. [Google Scholar] [CrossRef]
- Xiang, Y.; Nie, X.; Bernardy, M.; Liu, J.; Su, L.; Bhagwat, B.; Dickison, V.; Holmes, J.; Grose, J.M.; Creelman, A.C. Genetic diversity of strawberry mild yellow edge virus from eastern Canada. Arch. Virol. 2020, 165, 923–935. [Google Scholar] [CrossRef]
- Fernando, S.S.N.; Gunasekara, C.; Holton, J. Antimicrobial Nanoparticles: Applications and mechanisms of action. SRI Lankan J. Infect. Dis. 2018, 8, 2. [Google Scholar] [CrossRef]
- Parveen, S.; Wani, A.H.; Shah, M.; Devi, H.; Bhat, M.; Koka, J. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 2018, 115. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. In Advances in Virus Research; Elsevier Science: Amsterdam, The Netherlands, 2016; Volume 95, pp. 87–147. [Google Scholar]
- Sarwar, M. Chapter 27—Insects as transport devices of plant viruses. In Applied Plant Virology: Advances, Detection, and Antiviral Strategies; Academic Press: Cambridge, MA, USA, 2020; pp. 381–402. ISBN 978-0-12-818654-1. [Google Scholar]
- Ziegler-Graff, V. Molecular Insights into Host and Vector Manipulation by Plant Viruses. Viruses 2020, 12, 263. [Google Scholar] [CrossRef] [Green Version]
- Bragard, C.; Caciagli, P.; Lemaire, O.; López-Moya, J.J.; MacFarlane, S.; Susi, P.; Torrance, L. Status and Prospects of Plant Viruses Control through Interference Vector Transmission. Annu. Rev. Phytopathol. 2013, 51, 177–201. [Google Scholar] [CrossRef] [PubMed]
- Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A New Era for Mild Strain Cross-Protection. Viruses 2019, 11, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruthi, M.N.; Whitfield, E.C.; Otti, G.; Tumwegamire, S.; Kanju, E.; Legg, J.P.; Mkamilo, G.; Kawuki, R.; Benesi, I.; Zacarias, A.; et al. A method for generating virus-free cassava plants to combat viral disease epidemics in Africa. Physiol. Mol. Plant Pathol. 2019, 105, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B. Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato. J. Crop Sci. Biotechnol. 2015, 18, 341–348. [Google Scholar] [CrossRef]
- Panattoni, A.; D’Anna, F.; Cristani, C.; Triolo, E. Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy. J. Virol. Methods 2008, 146, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Maisaro, M.; Sugiharto, B.; Dewanti, P. The Effect of Concentration and Exposure Time Acyclovir for Elimination Sugarcane Mosaic Virus (SCMV) on The Apical Bud Culture of Sugarcane PS 881. J. ILMU DASAR 2017, 18, 31. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Zhou, G.; Zhang, T. Engineering plant virus resistance: From RNA silencing to genome editing strategies. Plant Biotechnol. J. 2020, 18, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Dominguez, M.; Boutonnet, M.; Solans, C. A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. J. Nanopart. Res. 2009, 11, 1823–1829. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Behal, A.; Sushkova, S.; Mandzhieva, S.; Singh, R.; Gorovtsov, A.; Tsitsuashvili, V.; Purvis, O.; Ghazaryan, K.; et al. Effects of Zinc-oxide Nanoparticles on Soil, Plants, Animals and Soil Organisms: A Review. Environ. Nanotechnol. Monit. Manag. 2018, 9, 76–84. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, G.; Pandey, K.; Nayak, M.K.; Topno, R.; Rabidas, V.; Das, P. Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus. Int. J. Infect. Dis. 2018, 73, 368. [Google Scholar] [CrossRef]
- Dinh, C.T.; Nguyen, T.; Kleitz, F.; Do, T.-O. Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals. ACS Nano. 2009, 3, 3737–3743. [Google Scholar] [CrossRef] [PubMed]
- Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018, 8, 3943. [Google Scholar] [CrossRef] [PubMed]
- Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Krumpfer, J.; Schuster, T.; Klapper, M.; Müllen, K. Make it nano-Keep it nano. Nano Today 2013, 8, 417–438. [Google Scholar] [CrossRef]
- Baun, A.; Sayre, P.; Steinhäuser, K.G.; Rose, J. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. NanoImpact 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, L.; Zhong, M.; Xiao, L.; Li, H.-W.; Wang, J. The Morphology and Surface Charge-Dependent Cellular Uptake Efficiency of Upconversion Nanostructures Revealed by Single Particle Optical Microscopy. Chem. Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhao, L.; Ma, H.; Zhang, H.; Guo, L.-H. Quantitative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals. Environ. Sci. Technol. 2017, 51, 10137–10145. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Altamirano, M.M.B.; Kolstoe, S.E.; Sánchez-García, F.J. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front. Cell. Infect. Microbiol. 2019, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Mazzon, M.; Marsh, M. Targeting viral entry as a strategy for broad-spectrum antivirals. F1000Research 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Lysenko, V.; Lozovski, V.; Lokshyn, M.; Gomeniuk, Y.; Dorovskih, A.; Rusinchuk, N.; Pankivska, Y.; Povnitsa, O.; Zagorodnya, S.; Tertykh, V.; et al. Nanoparticles as antiviral agents against adenoviruses. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 25021. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Rezatofighi, S.E.; Rafiei, S.; Ardakani, M.; Madadgar, O. In vitro anti-foot-and-mouth disease virus activity of magnesium oxide nanoparticles. IET Nanobiotechnol. 2015, 9. [Google Scholar] [CrossRef]
- Khandelwal, N.; Kaur, G.; Kumar, N.; Tiwari, A. Application of silver nanoparticles in viral inhibition: A new hope for antivirals. Dig. J. Nanomater. Biostruct. 2014, 9, 175–186. [Google Scholar]
- Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate. Bioconjug. Chem. 2009, 20, 1497–1502. [Google Scholar] [CrossRef]
- Broglie, J.J.; Alston, B.; Yang, C.; Ma, L.; Adcock, A.F.; Chen, W.; Yang, L. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles. PLoS ONE 2015, 10, e0141050. [Google Scholar] [CrossRef]
- Zhong, J.; Xia, Y.; Hua, L.; Liu, X.; Xiao, M.; Xu, T.; Zhu, B.; Cao, H. Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3485–3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levina, A.S.; Repkova, M.N.; Bessudnova, E.V.; Filippova, E.I.; Mazurkova, N.A.; Zarytova, V.F. High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza A virus in cell culture. Beilstein J. Nanotechnol. 2016, 7, 1166–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Jiang, J.; Gu, W.; Sun, C.; Wu, D.; Yang, T.; Yang, G. Photocatalytic Inactivation Efficiency of Anatase Nano-TiO2 Sol on the H9N2 Avian Influenza Virus. Photochem. Photobiol. 2010, 86, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Mazurkova, N.A.; Spitsyna, Y.; Shikina, N.; Ismagilov, Z.; Zagrebelny, S.; Ryabchikova, E. Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnol. Russ. 2010, 5, 417–420. [Google Scholar] [CrossRef]
- Liu, S.; Meng, X.-Y.; Perez-Aguilar, J.M.; Zhou, R. An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution. Sci. Rep. 2016, 6, 37761. [Google Scholar] [CrossRef] [Green Version]
- Mishra, Y.; Adelung, R.; Röhl, C.; Shukla, D.; Spors, F.; Tiwari, V. Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1. Antivir. Res. 2011, 92, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, A.; Ataei-Pirkooh, A.; Mir Mohamad Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S. Polyethylene glycol-coated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 2018, 13. [Google Scholar] [CrossRef]
- Cai, L.; Cai, L.; Jia, H.; Liu, C.; Wang, D.; Sun, X. Foliar Exposure of Fe3O4 Nanoparticles on Nicotiana benthamiana: Evidence for Nanoparticles Uptake, Plant Growth Promoter and Defense Response Elicitor against Plant Virus. J. Hazard. Mater. 2020, 393, 122415. [Google Scholar] [CrossRef]
- El-Dougdoug, N.K.; Bondok, A.M.; El-Dougdoug, K.A. Evaluation of Silver Nanoparticles as Antiviral Agent Against ToMV and PVY in Tomato Plants. Middle East J. Appl. Sci. 2018, 08, 100–111. [Google Scholar]
- Alkubaisi, N.A.; Aref, N.M.A. Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards. Appl. Nanosci. 2017, 7, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Jain, D. Green Synthesis of Silver Nanoparticles and their Application in Plant Virus Inhibition. J. Mycol. Plant Pathol. 2014, 44, 21–24. [Google Scholar]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sun, C.; Xu, C.; Wang, Z.; Zhao, M.; Wang, C.; Liu, L.; Chen, F. Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tob. Sci. Technol. 2016, 49, 22–30. [Google Scholar] [CrossRef]
- El-shazly, M.; Attia, Y.; Kabil, F.; Anis, E.; Hazman, M. Inhibitory Effects of Salicylic Acid and Silver Nanoparticles on Potato Virus Y-Infected Potato Plants in Egypt. Middle East J. Agric. Res. 2017, 6, 835–848. [Google Scholar]
- Elazzazy, A.; Elbeshehy, E.; Betiha, M. In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and Tomato Bushy Stunt Virus. Trop. J. Pharm. Res. 2017, 16, 2705–2711. [Google Scholar] [CrossRef]
- Shafie, R.M.; Salama, A.M.; Farroh, K.Y. Silver nanoparticles activity against Tomato spotted wilt virus. Middle East J. Agric. Res. 2018, 7, 1251–1267. [Google Scholar]
- Aref, N.; Alkubaisi, N.; Marraiki, N.; Hindi, A. Multi-Functional Effects of Gold Nano-Particles Inducing Plant Virus Resistance Crops. In Proceedings of the 5th Annual World Congress of Industrial Biotechnology-2012, Xi’an, China, 25 April 2012. [Google Scholar]
- Elsharkaway, M.; Derbalah, A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in faba bean: Control of broad bean stain virus by TiO2 nanostructures. Pest Manag. Sci. 2018. [Google Scholar] [CrossRef]
- Hao, Y.; Yuan, W.; Ma, C.; White, J.; Zhang, Z.; Adeel, M.; Zhou, T.; Yukui, R.; Xing, B. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ. Sci. Nano 2018, 5. [Google Scholar] [CrossRef]
- El-Sawy, M.; Elsharkawy, M.; Abass, J.; Kasem, M. Antiviral Activity of 2-Nitromethyl Phenol, Zinc Nanoparticles and Seaweed Extract Against Cucumber mosaic virus (CMV) in Eggplant. J. Virol. Antivir. Res. 2017, 6. [Google Scholar] [CrossRef]
- Elsharkawy, M.M.; Mousa, K.M. Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder. Int. J. Pest Manag. 2015, 61, 353–358. [Google Scholar] [CrossRef]
- El-Sawy, M.; Elsharkawy, M.; Abass, J.; Hagag, E. Inhibition of Tomato Yellow Leaf Curl Virus by Zingiber offi cinale and Mentha longifolia Extracts and Silica Nanoparticles and Its Refl ection on Tomato Growth and Yield. Int. J. Antivir. Antiretrovir. 2017, 1, 1–6. [Google Scholar]
- Derbalah, A.; Elsharkawy, M. A new strategy to control Cucumber mosaic virus using fabricated NiO-nanostructures. J. Biotechnol. 2019, 306. [Google Scholar] [CrossRef] [PubMed]
- Eugene, K.; Zholobak, N. Antiviral Activity of Cerium Dioxide Nanoparticles on Tobacco Mosaic Virus Model. In Proceedings of the Topical Issues of New Drugs Development, Kharkiv, Ukraine, April 2016. [Google Scholar]
- Soares, C.; Pereira, R.; Fidalgo, F. Metal-Based Nanomaterials and Oxidative Stress in Plants: Current Aspects and Overview. In Phytotoxicity of Nanoparticles; Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 197–227. ISBN 978-3-319-76707-9. [Google Scholar]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.; Xiaolan, H.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, P.; Dytrych, P.; Prerostova, S.; Petrova, S.; Vankova, R.; Vanek, T. Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper. Environ. Sci. Technol. 2017, 51, 10814–10824. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, H.; Juárez Maldonado, A.; Benavides-Mendoza, A.; Ortiz, H.; Cadenas-pliego, G.; Aspeytia, D.; González-Morales, S. Chitosan-PVA and Copper Nanoparticles Improve Growth and Overexpress the SOD and JA Genes in Tomato Plants under Salt Stress. Agronomy 2018, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Vinković, T.; Novak, O.; Strnad, M.; Goessler, W.; Domazet Jurašin, D.; Parađiković, N.; Vinković Vrček, I. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 2017, 156, 10–18. [Google Scholar] [CrossRef]
- Van Nhan, L.; Ma, C.; Rui, Y.; Liu, S.; Li, X.; Xing, B.; Liu, L. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption. Sci. Rep. 2015, 5, 11618. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212–213, 29–37. [Google Scholar] [CrossRef]
- Marslin, G.; Sheeba, C.J.; Franklin, G. Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. Front. Plant Sci. 2017, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.-M.; Rekha, K.; Venkidasamy, B.; Thiruvengadam, M. Effect of Copper Oxide Nanoparticles on the Physiology, Bioactive Molecules, and Transcriptional Changes in Brassica rapa ssp. rapa Seedlings. Water Air Soil Pollut. 2019, 230, 48. [Google Scholar] [CrossRef]
- Mazaheri Tirani, M.; Madadkar Haghjou, M.; Ismaili, A. Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct. Plant Biol. 2019, 46, 360–375. [Google Scholar] [CrossRef] [PubMed]
- Juárez Maldonado, A.; Cadenas-pliego, G.; Pinedo-Espinoza, J.; López-Palestina, C.U.; Hernández-Fuentes, A.; Ortiz, H.; Valdés-Reyna, J. Foliar Application of Cu Nanoparticles Modified the Content of Bioactive Compounds in Moringa oleifera Lam. Agronomy 2018, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Raigond, P.; Raigond, B.; Kaundal, B.; Singh, B.; Joshi, A.; Dutt, S. Effect of zinc nanoparticles on antioxidative system of potato plants. J. Environ. Biol. 2017, 38, 435–439. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Hernandez, C.; Feregrino-Perez, A.A.; Perez-Ramirez, I.; Ocampo-Velazquez, R.V.; Rico-García, E.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G. Controlled elicitation increases steviol glycosides (SGs) content and gene expression-associated to biosynthesis of SGs in Stevia rebaudiana B. cv. Morita II. Ind. Crops Prod. 2019, 139, 111479. [Google Scholar] [CrossRef]
- Worrall, E.; Hamid, A.; Mody, K.; Mitter, N.; Pappu, H. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Panattoni, A.; Luvisi, A.; Triolo, E. Review. Elimination of viruses in plants: Twenty years of progress. Span. J. Agric. Res. 2013, 11, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Stelling, J.; Hossini, H.; Kamal, M.; Ashraf, G. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Curr. Drug Metab. 2016, 18. [Google Scholar] [CrossRef]
- Siddiqi, K.; Husen, A. Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Res. Lett. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ebbs, S.; Chen, Y.; Ma, X. Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, J.; De la Torre Roche, R.; Xing, B.; Newman, L.A.; Ma, X.; Majumdar, S.; Gardea-Torresdey, J.; White, J.C. Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain. Environ. Sci. Technol. 2014, 48, 13102–13109. [Google Scholar] [CrossRef] [PubMed]
- You, T.; Liu, D.; Jing, C.; Yang, Z.; Dou, R.; Gao, X.; Wang, L. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J. Soils Sediments 2017, 18. [Google Scholar] [CrossRef]
- Priester, J.; Ge, Y.; Mielke, R.; Horst, A.; Moritz, S.; Espinosa, K.; Gelb, J.; Walker, S.; Nisbet, R.; An, Y.-J.; et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. USA 2012, 109, E2451–E2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, E.M. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn. Reson. Med. 2015, 73, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Keswani, C. Intellectual Property Issues in Nanotechnology; CRC Press: Cleveland, OH, USA, 2020; ISBN 978-0367482305. [Google Scholar]
- Chen, J.; Shao, L. Mass production of nanoparticles by high gravity reactive precipitation technology with low cost. China Particuol. 2003, 1, 64–69. [Google Scholar] [CrossRef]
- Lade, B.; Shanware, A. Phytonanofabrication: Methodology and Factors Affecting Biosynthesis of Nanoparticles. In Nanosystems; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Al-Dhabi, N.A.; Valan Arasu, M. Environmentally-Friendly Green Approach for the Production of Zinc Oxide Nanoparticles and Their Anti-Fungal, Ovicidal, and Larvicidal Properties. Nanomaterials 2018, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Peralta-videa, J.; Huang, Y.; Parsons, J.; Zhao, L.; Lopez-Moreno, M.; Hernandez-Viezcas, J.; Gardea-Torresdey, J. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 2016, 1, 4. [Google Scholar] [CrossRef]
- Cobos, A.; Montes, N.; López-Herranz, M.; Gil-Valle, M.; Pagán, I. Within-Host Multiplication and Speed of Colonization as Infection Traits Associated with Plant Virus Vertical Transmission. J. Virol. 2019, 93, e01078–e01119. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
Nanoparticle | Size | Plant | Pathogen | Effect | References |
---|---|---|---|---|---|
Silver nanoparticles (AgNPs) | 10–20 nm | Cymopsis tetragonaloba | Sunhemp rosette virus (SHRV) | Complete suppression of the disease | [64] |
AgNPs | 77 nm | Vicia faba | Bean yellow mosaic virus (BYMV) | Decrease in virus concentration, percentage of infection, and disease severity Reduction in lesions on infected leaves | [65] |
Schiff base nanosilver NPs | Nicotiana tabacum | Tobacco mosaic virus (TMV) | Reduction of the harm of TMV to tobacco | [66] | |
AgNPs | 12 nm | Solanum tuberosum | Potato virus Y (PVY) | Resistance to virus infection | [67] |
Graphene oxide-silver NPs (GO-AgNPs) | 3050 nm | Lactuca sativa | Tomato bushy stunt virus (TBSV) | Decrease in virus concentration, infection percentage, and disease severity | [68] |
AgNPs | 12.6 ± 5 nm | Solanum tuberosum L. cv. Spunta | Tomato spotted wilt virus (TSWV) | Decrease in TSWV infectivity and produces an inhibitory effect in local lesions | [69] |
AgNPs | - | Solanum lycopersicum | Tomato mosaic virus (ToMV) | Reduction in disease severity and virus infection | [62] |
AgNPs | - | Solanum lycopersicum | Potato virus Y (PVY) | Reduction in disease severity and virus infection | [62] |
Gold NPs (AuNPs) | Hordeum vulgare | Barley yellow mosaic virus (BaYMV) | Dissociation of virus particle in vitro | [70] | |
AuNPs | 3.151 to 31.67 nm | Hordeum vulgare | Barley yellow dwarf virus-PAV (BYDV-PAV) | Destroys gold barley yellow dwarf virus and eliminates virus infectivity hazards | [63] |
Titanium dioxide NPs (TiO2NPs) | ~3–5 µm | Vicia faba L. Fabaceae | Broad bean stain virus (BBSV) | Reduction in disease severity | [71] |
TiO2NPs | 20 nm | Nicotiana benthamiana | Turnip mosaic virus (TuMV) | Effectively limits viral infection and replication | [72] |
Zinc oxide NPs (ZnONPs) | 18 nm | Nicotiana benthamiana | Tobacco mosaic virus (TMV) | Suppression of the speed of TMV invasion | [9] |
ZnONPs | - | Solanum melongena | Cucumber mosaic virus (CMV) | Disease severity and incidence were significantly reduced | [73] |
Silicon dioxide NPs (SiO2NPs) | - | Cucumis sativus | Papaya ringspot virus (PRSV) | Reduction in disease severity and virus accumulation | [74] |
SiO2NPs | 100 nm | Solanum lycopersicum | Tomato yellow leaf curl virus (TYLCV) | Reduced disease severity and TYLCV concentration | [75] |
SiO2NPs | 20 nm | Nicotiana tabacum | Tobacco mosaic virus (TMV) | Suppression of the speed of TMV invasion | [9] |
Iron oxide NPs (Fe2O3NPs) | 40–100 nm | Nicotiana tabacum | Turnip mosaic virus (TuMV) | Effectively limits viral infection and replication | [72] |
Fe3O4NPs | 0.19 nm | Nicotiana benthamiana | Tobacco mosaic virus (TMV) | [9] | |
Nickel oxide NPs (NiONPs) | 15 to 20 nm | Cucumis sativus | Cucumber mosaic virus (CMV) | Reduces disease severity and CMV concentration | [76] |
Cerium oxide NPs (CeO2NPs) | - | Datura stramonium and Nicotiana tabacum | Tobacco mosaic virus (TMV) | Reduction in virus symptoms | [77] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Avila-Juarez, L.; Torres-Pacheco, I. Nanoparticles as Potential Antivirals in Agriculture. Agriculture 2020, 10, 444. https://doi.org/10.3390/agriculture10100444
Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Rico-Garcia E, Ocampo-Velazquez RV, Avila-Juarez L, Torres-Pacheco I. Nanoparticles as Potential Antivirals in Agriculture. Agriculture. 2020; 10(10):444. https://doi.org/10.3390/agriculture10100444
Chicago/Turabian StyleVargas-Hernandez, Marcela, Israel Macias-Bobadilla, Ramon Gerardo Guevara-Gonzalez, Enrique Rico-Garcia, Rosalia Virginia Ocampo-Velazquez, Luciano Avila-Juarez, and Irineo Torres-Pacheco. 2020. "Nanoparticles as Potential Antivirals in Agriculture" Agriculture 10, no. 10: 444. https://doi.org/10.3390/agriculture10100444
APA StyleVargas-Hernandez, M., Macias-Bobadilla, I., Guevara-Gonzalez, R. G., Rico-Garcia, E., Ocampo-Velazquez, R. V., Avila-Juarez, L., & Torres-Pacheco, I. (2020). Nanoparticles as Potential Antivirals in Agriculture. Agriculture, 10(10), 444. https://doi.org/10.3390/agriculture10100444