Soil Quality Characteristics as Affected by Continuous Rice Cultivation and Changes in Cropping Systems in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analyses
3. Results
3.1. Changes in Cultivated Land Area and Cropping Characteristics
3.2. Comparisons of Soil Quality Attributes between Paddy Fields and Uplands
3.3. Variations in Critical Soil Attributes with Cropping Systems
3.4. Changes in Critical Soil Attributes over Time
4. Discussion
4.1. Responses of Rice Grain Yield to the Increased Fertilization Rate
4.2. Improvement of Soil Quality
4.3. Consequences of Continuous Cultivation with Paddy Rice
4.4. Impacts of Changes in Cropping Systems and Fertilization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IRRI. Bringing Hope, Improving Lives: Strategic Plan 2007–2015; IRRI: Manila, Philippines, 2006; p. 61. [Google Scholar]
- FAO. International Year of Rice-2018 Fact Sheet. 2018. Available online: http://www.fao.org/rice2018/en/f-sheet/factsheet1.pdf (accessed on 29 March 2019).
- Mohanty, S.; Panda, M.K.; Acharya, L.; Nayak, S. Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India. 3 Biotech 2014, 4, 383–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Lv, T.F.; Chen, Y.; Westby, A.P.; Ren, W.J. Soil physicochemical and biological properties of paddy-upland rotation: A review. Sci. World J. 2014, 856352. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Nayak, A.K.; Puree, C.; Tripathi, R.; Lal, B.; Gautam, P.; Bhattacharyya, P.; Mohanty, S.; Kumar, A.; Panda, B.; et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil Tillage Res. 2017, 170, 136–146. [Google Scholar] [CrossRef]
- Wissing, L.; Kolbl, A.; Housler, W.; Schad, P.; Cao, Z.H.; Koger-Knabner, I. Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil Tillage Res. 2013, 126, 60–71. [Google Scholar] [CrossRef]
- Wissing, L.; Kolbl, A.; Vogelsang, V.; Fu, J.R.; Cao, Z.H.; Koger-Knabner, I. Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Catena 2011, 87, 376–385. [Google Scholar] [CrossRef]
- People’s Republic of China National Bureau of Statistics. China Statistical Yearbook 2017. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.html (accessed on 29 March 2019).
- Liu, Q. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China. Trans. CSAE 2017, 33, 214–221. [Google Scholar]
- Yang, F.; Tian, J.; Meersmans, J.; Fang, H.J.; Yang, H.; Lou, Y.L.; Li, Z.F.; Liu, K.L.; Zhou, Y.; Blagodatskaya, E.; et al. Functional soil organic matter fractions in response to long-term fertilization in upland and paddy systems in South China. Catena 2018, 162, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Xia, N.; Jiang, P.H.; Zhong, L.S.; Pian, Y.Z.; Duan, Y.W.; Huang, Q.H.; Li, M.C. Analysis of farmland fragmentation in China Modernization Demonstration Zone since “Reform and Openness”: A case study of South Jiangsu Province. Sci. Rep. 2015, 5, 11797. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 34, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Brabec, E.; Smith, C. Agricultural land fragmentation: The spatial effects of three land protection strategies in the eastern United States. Landsc. Urban Plan. 2002, 58, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Bondi, G.; Wall, D.; Bacher, M.; Emmet-Booth, J.; Graça, J.; Marongiu, I.; Creamer, R. Role of soil biology and soil functions in relation to land use intensity. EGU Gen. Assem. Conf. Abstr. 2017, 19, 15021. [Google Scholar]
- Congreves, K.A.; Hayes, A.; Verhallen, E.A.; Van Eerd, L.L. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res. 2015, 152, 17–28. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The soil health tool—Theory and initial broad-scale application. Appl. Soil Ecol. 2017, 125, 162–168. [Google Scholar] [CrossRef]
- Tan, Z.X.; Liu, S.G.; Sohl, T.L.; Wu, Y.P.; Young, C.J. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States. Proc. Natl. Acad. Sci. USA 2015, 112, 12723–12728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlesinger, W.H. Carbon and Agriculture: Carbon Sequestration in Soils. Science 1999, 284, 2095. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Soil Health. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 26 February 2020).
- Takoutsing, B.; Weber, J.; Aynekulu, E.; Martín, J.A.R.; Shepherd, K.; Sila, A.; Diby, L. Assessment of soil health indicators for sustainable production of maizein smallholder farming systems in the highlands of Cameroon. Geoderma 2016, 276, 64–73. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Tan, X.Z.; Lal, R.; Smeck, N.E.; Calhoun, F.G.; Slater, B.K.; Parkinson, B.; Gehring, R.M. Taxonomic and geographic distribution of soil organic carbon pools in Ohio. Soil Sci. Soc. Am. J. 2004, 68, 1896–1904. [Google Scholar] [CrossRef]
- Land Administration Law of the People’s Republic of China (Issued in 1986). Available online: https://www.cecc.gov/resources/legal-provisions/land-administration-law-of-the-peoples-republic-of-china-0 (accessed on 29 March 2019).
- Basic Farmland Protection Ordinances. Available online: http://www.asianlii.org/cn/legis/cen/laws/rotpobf421/ (accessed on 29 March 2019).
- China Statistical Yearbook. 2018. Available online: http://www.stats.gov.cn/tjsj/tjcbw/201810/t20181024_1629505.html (accessed on 29 March 2019).
- Zhao, Y.C.; Wang, M.Y.; Hu, S.J.; Zhang, X.D.; Zhu, O.Y.; Zhang, G.L.; Huang, B.; Zhao, S.W.; Wu, J.S.; Xie, D.T.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.B.; Huang, J.L.; Zhong, X.H. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China 2002, 1, 776–785. [Google Scholar]
- Wang, J.; Zhao, Y.; Zhang, J.B.; Zhao, W.; Muller, C.; Cai, Z.C. Nitrification is the key process determining N use efficiency in paddy soils. J. Plant Nutr. Soil Sci. 2017, 180, 648–658. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, H.P.; Shan, Y.H.; Wang, J.J.; Qian, X.Q.; Meng, T.Z.; Zhang, J.B.; Cai, Z.C. Response of denitrification in paddy soils with different nitrification rates to soil moisture and glucose addition. Sci. Total Environ. 2019, 651, 2097–2104. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Singha, R.S.; Basak, N.; Mandal, B. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Li, J.; Tao, B.R.; Hu, N.J. Effect of different fertilization modes on soil organic carbon sequestration in paddy fields in South China: A meta-analysis. Ecol. Indic. 2015, 53, 144–153. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, Y.; Han, W.X.; Tang, A.; Shen, J.L.; Cui, Z.L.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Kogel-Knabner, I.; Amelung, W.; Cao, Z.H.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kolbl, A.; Schloter, M. Biogeochemistry of paddy soils. Geoderma 2010, 157, 1–14. [Google Scholar] [CrossRef]
- Tian, K.; Zhao, Y.C.; Xu, X.H.; Hai, N.; Huang, B.; Deng, W.J. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ. 2015, 204, 40–50. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.S.; Shen, J.L.; Liu, S.L.; Wang, C.; Chen, D.; Huang, T.P.; Zhang, J.P. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Yang, L.Z.; Xiao, H.A.; Yin, S.X.; Xia, L.Z.; Li, Y.D.; Liu, G.H. Effects of long-term fertilization and straw returning on nitrogen distribution and mineralization characteristics of paddy soil in red soil. Plant Nutr. Fertil. Sci. 2011, 17, 898–905. [Google Scholar]
- Ren, X.N.; Dong, Y.X. Construction of multivariate composite calculation model of soil organic carbon content in plough horizon based on geodetectors: A case study on the Pearl River Delta. Trop. Geogr. 2018, 38, 546–556. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Jin, S.Q.; Ma, H.Y.; Huang, J.K.; Hu, R.; Rozelle, S. Productivity, efficiency and technical change: Measuring the performance of China’s transforming agriculture. J. Prod. Anal. 2010, 33, 191–207. [Google Scholar] [CrossRef]
Item | Unit | Yearly Statistical Data † | Change in Cropping System ‡ and Area | ||||||
---|---|---|---|---|---|---|---|---|---|
1980 | 1990 | 2000 | 2010 | 2015 | 1980 | 2017 | Ha | ||
Total cultivated area | ha | 28,287 | 21,166 | 18,822 | 20,637 | 20,646 | Paddy fields | Continuous paddy fields | 14,132 |
Paddy fields | % ¶ | 82.5 | 85.8 | 84.3 | 82.3 | 82.0 | Paddy fields | New uplands | 232 |
Uplands § | % ¶ | 17.5 | 14.2 | 15.7 | 15.9 | 15.8 | Uplands | New paddy fields | 2,796 |
Cropping index | 1.63 | 1.66 | 1.32 | 2.13 | 2.16 | Uplands | Continuous uplands | 471 | |
Fertilization rate # | kg ha−1 | 106 | 476 | 362 | 423 | 449 | |||
Rice grain yield | kg ha−1 | 4914 $ | 5430 | 5841 | 4803 | 5178 |
Year | Cropping System † | Soil Order | Number of Samples | Crop | Water Condition | pH | SOM | TN | AP | AK | C:N |
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | ppm | ||||||||||
1980 | Paddy fields | Anthrosols | 49 | Paddy rice ‡ | Flooded | 5.49 a | 22.1 a | 1.12 a | 8.1 a | 42 a | 11.4 a |
Uplands | Ferralosols | 4 | Various crops § | Rain-fed/Irrigated | 5.37 a | 16.4 b | 0.77 b | 3.5 b | 45 a | 12.4 a | |
2017 | Paddy fields | Anthrosols | 49 | Paddy rice ‡ | Flooded | 5.71 b | 22.4 a | 0.85 b | 43 c | 79 b | 15.3 b |
Uplands | Ferralosols | 4 | Various crops § | Rain-fed /Irrigated | 5.85 b | 21.8 a | 0.82 b | 45 c | 74 b | 15.4 b |
Cropping System † | Number of Samples | Bulk Density | pH | SOM | TN | AP | AK | |
---|---|---|---|---|---|---|---|---|
1980 | 2017 | 106 g m−3 | g kg−1 | mg kg−1 | ||||
Paddy fields | Continuous paddy fields ‡ | 44 | 1.06 | 5.74 a | 23.20 a | 0.94 a | 42 a | 90 a |
Paddy fields | New uplands § | 4 | 1.07 | 5.79 a | 19.40 b | 0.87 ab | 47 a | 82 a |
Uplands | New paddy fields ‡ | 5 | 1.05 | 5.68 a | 21.7 ab | 0.79 b | 42 a | 71 b |
Uplands | Continuous uplands § | 4 | 1.06 | 5.89 a | 24.20 a | 0.79 b | 42 a | 67 b |
Cropping System † | Number of Samples | pH | SOM | TN | AP | AK | |
---|---|---|---|---|---|---|---|
2017 | 1980 | g kg−1 | ppm | ||||
Continuous paddy fields ‡ | Paddy fields | 44 | 0.25 * | 1.05 | −0.18 | 34 * | 48 * |
New uplands § | Paddy fields | 4 | 0.30 * | −2.72 * | −0.25 | 39 * | 40 * |
New paddy fields ‡ | Uplands | 5 | 0.31 * | 5.39 * | 0.02 | 39 * | 26 * |
Continuous uplands § | Uplands | 4 | 0.52 * | 7.89 * | 0.02 | 39 * | 22 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Chen, F.; Ma, T.; Hu, Y. Soil Quality Characteristics as Affected by Continuous Rice Cultivation and Changes in Cropping Systems in South China. Agriculture 2020, 10, 443. https://doi.org/10.3390/agriculture10100443
Ren X, Chen F, Ma T, Hu Y. Soil Quality Characteristics as Affected by Continuous Rice Cultivation and Changes in Cropping Systems in South China. Agriculture. 2020; 10(10):443. https://doi.org/10.3390/agriculture10100443
Chicago/Turabian StyleRen, Xiangning, Feixiang Chen, Tao Ma, and Yueming Hu. 2020. "Soil Quality Characteristics as Affected by Continuous Rice Cultivation and Changes in Cropping Systems in South China" Agriculture 10, no. 10: 443. https://doi.org/10.3390/agriculture10100443
APA StyleRen, X., Chen, F., Ma, T., & Hu, Y. (2020). Soil Quality Characteristics as Affected by Continuous Rice Cultivation and Changes in Cropping Systems in South China. Agriculture, 10(10), 443. https://doi.org/10.3390/agriculture10100443