Long-Term Advantages of Ovarian Reserve Maintenance and Follicle Development Using Adipose Tissue-Derived Stem Cells in Ovarian Tissue Transplantation
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Design
2.2. Adipose Tissue-Derived Stem Cells
2.3. Transplantation Procedure
2.3.1. Step 1: Preparation of the Peritoneal Grafting Site
2.3.2. Human Ovarian Tissue Thawing Procedure
2.3.3. Step 2: Ovarian Tissue Transplantation
2.4. ELISA
2.5. Histology and Immunolabeling
2.5.1. Follicle Outcomes
2.5.2. Follicle Hormone Assessment
2.5.3. Follicle Competence and Maturation
2.6. Statistical Analysis
3. Results
3.1. Graft Recovery Rate and Macroscopic Aspect
3.2. Hormone Kinetics
3.3. Follicle Outcomes
3.4. AMH Expression
3.4.1. Positive Follicle Count
3.4.2. Quantification of Staining Concentrations
3.5. AMHRII Expression
3.5.1. Positive Follicle Count
3.5.2. Quantification of Staining Concentrations
3.6. ERα Expression
3.6.1. Positive Follicle Count
3.6.2. Quantification of Staining Concentrations
3.7. ERβ Expression
3.7.1. Positive Follicle Count
3.7.2. Quantification of Staining Concentrations
3.8. C-Kit and Kit Ligand Expression
4. Discussion
4.1. Follicle Density and Primordial Follicle Survival
4.2. AMH and AMHRII
4.3. Estradiol and ERs
4.4. C-Kit and Kit Ligand
4.5. Limitations of The Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolmans, M.M.; Manavella, D.D. Recent advances in fertility preservation. J. Obstet. Gynaecol. Res. 2019, 45, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.C.; Hoefgen, H.; Strine, A.; Dasgupta, R. Fertility preservation options in pediatric and adolescent patients with cancer. Cancer 2018, 124, 1867–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolmans, M.M.; Falcone, T.; Patrizio, P. Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertil. Steril. 2020, 114, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J. Assist. Reprod. Genet. 2015, 32, 1167–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnez, J.; Dolmans, M.M. Fertility preservation in women. N. Engl. J. Med. 2017, 377, 1657–1665. [Google Scholar] [CrossRef]
- Van Eyck, A.S.; Jordan, B.F.; Gallez, B.; Heilier, J.F.; Van Langendonckt, A.; Donnez, J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil. Steril. 2009, 92, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Manavella, D.D.; Cacciottola, L.; Desmet, C.M.; Jordan, B.F.; Donnez, J.; Amorim, C.A.; Dolmans, M.M. Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: A potential way to improve ovarian tissue transplantation. Hum. Reprod. 2018, 33, 270–279. [Google Scholar] [CrossRef]
- Manavella, D.D.; Cacciottola, L.; Pomme, S.; Desmet, C.M.; Jordan, B.F.; Donnez, J.; Amorim, C.A.; Dolmans, M.M. Two-step transplantation with adipose tissue-derived stem cells increases follicle survival by enhancing vascularization in xenografted frozen-thawed human ovarian tissue. Hum. Reprod. 2018, 33, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Manavella, D.D.; Cacciottola, L.; Payen, V.L.; Amorim, C.A.; Donnez, J.; Dolmans, M.M. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Mol. Hum. Reprod. 2019, 25, 184–193. [Google Scholar] [CrossRef]
- Gavish, Z.; Spector, I.; Peer, G.; Schlatt, S.; Wistuba, J.; Roness, H.; Meirow, D. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. J. Assist. Reprod. Genet. 2018, 35, 61–69. [Google Scholar] [CrossRef]
- Masciangelo, R.; Hossay, C.; Donnez, J.; Dolmans, M.M. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reprod. Biomed. 2019, 39, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.M.; Martinez-Madrid, B.; Gadisseux, E.; Guiot, Y.; Yuan, W.Y.; Torre, A.; Camboni, A.; Van Langendonckt, A.; Donnez, J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 2007, 134, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, A.; Van Langendonckt, A.; Gilliaux, S.; Dolmans, M.M.; Donnez, J.; Amorim, C.A. Effect of cryopreservation and transplantation on the expression of kit ligand and anti-Mullerian hormone in human ovarian tissue. Hum. Reprod. 2012, 27, 1088–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camboni, A.; Martinez-Madrid, B.; Dolmans, M.M.; Nottola, S.; Van Langendonckt, A.; Donnez, J. Autotransplantation of frozen-thawed ovarian tissue in a young woman: Ultrastructure and viability of grafted tissue. Fertil. Steril. 2008, 90, 1215–1218. [Google Scholar] [CrossRef]
- Nisolle, M.; Casanas-Roux, F.; Qu, J.; Motta, P.; Donnez, J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil. Steril. 2000, 74, 122–129. [Google Scholar] [CrossRef]
- Chiti, M.C.; Dolmans, M.M.; Mortiaux, L.; Zhuge, F.; Ouni, E.; Shahri, P.A.K.; van Ruymbeke, E.; Champagne, S.-D.; Donnez, J.; Amorim, C.A. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J. Assist. Reprod. Genet. 2018, 35, 41–48. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M.; Demylle, D.; Jadoul, P.; Pirard, C.; Squifflet, J.; Martinez-Madrid, B.; Van Langendonckt, A. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004, 364, 1405–1410. [Google Scholar] [CrossRef]
- Anderson, R.A.; McLaughlin, M.; Wallace, W.H.; Albertini, D.F.; Telfer, E.E. The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence. Hum. Reprod. 2014, 29, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Bouzin, C.; Saini, M.L.; Khaing, K.K.; Ambroise, J.; Marbaix, E.; Gregoire, V.; Bol, V. Digital pathology: Elementary, rapid and reliable automated image analysis. Histopathology 2016, 68, 888–896. [Google Scholar] [CrossRef] [Green Version]
- Detti, L.; Fletcher, N.M.; Saed, G.M.; Sweatman, T.W.; Uhlmann, R.A.; Pappo, A.; Peregrin-Alvarez, I. Xenotransplantation of pre-pubertal ovarian cortex and prevention of follicle depletion with anti-Müllerian hormone (AMH). J. Assist. Reprod. Genet. 2018, 35, 1831–1841. [Google Scholar] [CrossRef]
- Friedman, O.; Orvieto, R.; Fisch, B.; Felz, C.; Freud, E.; Ben-Haroush, A.; Abir, R. Possible improvements in human ovarian grafting by various host and graft treatments. Hum. Reprod. 2012, 27, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, M.; Soleimani Mehranjani, M.; Shariatzadeh, S.M.; Eimani, H.; Shahverdi, A. Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts. Reproduction 2014, 147, 733–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimani, R.; Heytens, E.; Oktay, K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS ONE 2011, 6, e19475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Israely, T.; Nevo, N.; Harmelin, A.; Neeman, M.; Tsafriri, A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum. Reprod. 2006, 21, 1368–1379. [Google Scholar] [CrossRef]
- Dolmans, M.M.; Binda, M.M.; Jacobs, S.; Dehoux, J.P.; Squifflet, J.L.; Ambroise, J.; Donnez, J.; Amorim, C.A. Impact of the cryopreservation technique and vascular bed on ovarian tissue transplantation in cynomolgus monkeys. J. Assist. Reprod. Genet. 2015, 32, 1251–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au, P.; Tam, J.; Fukumura, D.; Jain, R.K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008, 111, 4551–4558. [Google Scholar] [CrossRef] [Green Version]
- Moon, M.H.; Kim, S.Y.; Kim, Y.J.; Kim, S.J.; Lee, J.B.; Bae, Y.C.; Sung, S.M.; Jung, J.S. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol. Biochem. 2006, 17, 279–290. [Google Scholar] [CrossRef]
- Dolmans, M.M.; Cacciottola, L.; Amorim, C.A.; Manavella, D. Translational research aiming to improve survival of ovarian tissue transplants using adipose tissue-derived stem cells. Acta Obstet. Gynecol. Scand. 2019, 98, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Donnez, J.; Dolmans, M.M.; Pellicer, A.; Diaz-Garcia, C.; Sanchez Serrano, M.; Schmidt, K.T.; Ernst, E.; Luyckx, V.; Andresen, C.Y. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: A review of 60 cases of reimplantation. Fertil. Steril. 2013, 99, 1503–1513. [Google Scholar] [CrossRef]
- Lotz, L.; Dittrich, R.; Hoffmann, I.; Beckmann, M.W. Ovarian tissue transplantation: Experience from Germany and worldwide efficacy. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119867357. [Google Scholar] [CrossRef] [Green Version]
- Van der Ven, H.; Liebenthron, J.; Beckmann, M.; Toth, B.; Korell, M.; Krussel, J.; Frambach, T.; Kupka, M.; Hohl, M.K.; Winkler-Crepaz, K.; et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: Tissue activity, pregnancy and delivery rates. Hum. Reprod. 2016, 31, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J. Assist. Reprod. Genet. 2012, 29, 489–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirshfield, A.N. Development of follicles in the mammalian ovary. Int. Rev. Cytol. 1991, 124, 43–101. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.T.; Campbell, B.; de Souza, C.; Telfer, E. Long-term ovarian function in sheep after ovariectomy and autotransplantation of cryopreserved cortical strips. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113 (Suppl. S1), S55–S59. [Google Scholar] [CrossRef] [PubMed]
- Masciangelo, R.; Hossay, C.; Chiti, M.C.; Manavella, D.D.; Ammorim, C.A.; Donnez, J.; Dolmans, M.M. Role of the PI3K and hippo pathways in follicle activation after grafting of human ovarian tissue. J. Assist. Reprod. Genet. 2020, 37, 101–108. [Google Scholar] [CrossRef]
- Luyckx, V.; Scalercio, S.; Jadoul, P.; Amorim, C.A.; Soares, M.; Donnez, J.; Dolmans, M.M. Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation. Fertil. Steril. 2013, 100, 1350–1357. [Google Scholar] [CrossRef]
- Pellatt, L.; Rice, S.; Dilaver, N.; Heshri, A.; Galea, R.; Brincat, M.; Brown, K.; Simpson, E.R.; Mason, H.D. Anti-Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil. Steril. 2011, 96, 1246–1251. [Google Scholar] [CrossRef]
- Rey, R.; Lukas-Croisier, C.; Lasala, C.; Bedecarras, P. AMH/MIS: What we know already about the gene, the protein and its regulation. Mol. Cell. Endocrinol. 2003, 211, 21–31. [Google Scholar] [CrossRef]
- Kristensen, S.G.; Andersen, K.; Clement, C.A.; Franks, S.; Hardy, K.; Andersen, C.Y. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries. Mol. Hum. Reprod. 2014, 20, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Amorim, C.A.; Donnez, J.; Dehoux, J.P.; Scalercio, S.R.; Squifflet, J.; Dolmans, M.M. Long-term follow-up of vitrified and autografted baboon (Papio anubis) ovarian tissue. Hum. Reprod. 2019, 34, 323–334. [Google Scholar] [CrossRef]
- Janse, F.; Donnez, J.; Anckaert, E.; de Jong, F.H.; Fauser, B.C.J.M.; Dolmans, M.M. limited value of ovarian function markers following orthotopic transplantation of ovarian tissue after gonadotoxic treatment. JCEM 2011, 96, 1136–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosbois, J.; Demeestere, I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum. Reprod. 2018, 33, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, G.; El-Alfy, M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J. Clin. Endocrinol. Metab. 2000, 85, 4835–4840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.E.; Fuller, P.J. Ovarian actions of estrogen receptor-beta: An update. Semin. Reprod. Med. 2012, 30, 32–38. [Google Scholar]
- Drummond, A.E.; Fuller, P.J. The importance of ERbeta signalling in the ovary. J. Endocrinol. 2010, 205, 15–23. [Google Scholar] [CrossRef]
- Tuck, A.R.; Robker, R.L.; Norman, R.J.; Tilley, W.D.; Hickey, T.E. Expression and localisation of c-kit and KITL in the adult human ovary. J. Ovar. Res. 2015, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 2002, 296, 1655–1657. [Google Scholar] [CrossRef]
- John, G.B.; Shidler, M.J.; Besmer, P.; Castrillon, D.H. Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev. Biol. 2009, 331, 292–299. [Google Scholar] [CrossRef] [Green Version]
Primordial | Primary | Secondary | Antral | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-grafted controls (%) | OT (%) | 2-step/ ASCs+OT (%) | Non-grafted controls (%) | OT (%) | 2-step/ ASCs+OT (%) | Non-grafted controls (%) | OT (%) | 2-step/ ASCs+OT (%) | Non-grafted controls (%) | OT (%) | 2-step/ ASCs+OT (%) | |
AMH | 6.2 ± 6.2 | 44 ± 29.4 | 50 ± 28.8 | 32.5 ± 13.1 a | 100 ± 0 b | 80.6 ± 15.5 | 33 ± 17 | 94 ± 6 | 88.6 ± 11.3 | 0 | 98 ± 2 | 90.3 ± 9.6 |
(3/40) | (2/5) | (4/8) | (7/29) | (8/8) | (12/17) | (2/8) | (11/12) | (12/14) | (15/16) | (11/13) | ||
AMHRII | 80 ± 20 | 100 ± 0 | 100 ± 0 | 90 ± 10 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 0 | 100 ± 0 | 100 ± 0 |
(13/29) | (1/1) | (7/7) | (12/16) | (4/4) | (9/9) | (6/6) | (13/13) | (23/23) | (15/15) | (14/14) | ||
ERα | 76 ± 24 | 70 ± 30 | 83.2 ± 16.7 | 100 ± 0 a | 75 ± 25 | 47.7 ± 22.1 b | 100 ± 0 a | 55.3 ± 5.3 | 75 ± 25 b | 0 | 85.2 ± 14.7 | 90 ± 10 |
(50/55) | (3/6) | (6/10) | (19/19) | (7/11) | (5/10) | (13/13) | (9/14) | (10/16) | (9/16) | (9/11) | ||
ERβ | 31.7 ± 11.8 a | 100 ± 0 b | 80 ± 20 b | 54 ± 29.1 a | 100 ± 0 | 100 ± 0 b | 75 ± 25 | 93.3 ± 6.6 | 100 ± 0 | 0 | 97.5 ± 2.5 | 100 ± 0 |
(16/49) | (5/5) | (10/13) | (6/10) | (6/6) | (8/8) | (3/4) | (13/14) | (18/18) | (13/14) | (15/15) | ||
C-kit | 22.1 ± 89.7 a | 100 ± 0 b | 57.9 ± 19.7 | 37.2 ± 13.5 | 90 ± 10 | 75.7 ± 12.6 | 23.8 ± 23.8 | 68.5 ± 10.8 | 57.7 ± 20.1 | N/A | N/A | N/A |
(11/33) | (7/7) | (16/21) | (10/22) | (12/15) | (13/17) | (5/12) | (15/36) | (15/22) | ||||
Kit ligand | 0 | 0 | 0 | 3.1 ± 3.1 | 0 | 27 ± 10.4 | 4.7 ± 4.7 | 19.7 ± 6.6 | 36 ± 13.7 | N/A | N/A | N/A |
(0/33) | (0/7) | (0/21) | (1/22) | (0/15) | (2/17) | (1/12) | (6/36) | (9/22) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciottola, L.; Nguyen, T.Y.T.; Chiti, M.C.; Camboni, A.; Amorim, C.A.; Donnez, J.; Dolmans, M.-M. Long-Term Advantages of Ovarian Reserve Maintenance and Follicle Development Using Adipose Tissue-Derived Stem Cells in Ovarian Tissue Transplantation. J. Clin. Med. 2020, 9, 2980. https://doi.org/10.3390/jcm9092980
Cacciottola L, Nguyen TYT, Chiti MC, Camboni A, Amorim CA, Donnez J, Dolmans M-M. Long-Term Advantages of Ovarian Reserve Maintenance and Follicle Development Using Adipose Tissue-Derived Stem Cells in Ovarian Tissue Transplantation. Journal of Clinical Medicine. 2020; 9(9):2980. https://doi.org/10.3390/jcm9092980
Chicago/Turabian StyleCacciottola, Luciana, Thu Y. T. Nguyen, Maria C. Chiti, Alessandra Camboni, Christiani A. Amorim, Jacques Donnez, and Marie-Madeleine Dolmans. 2020. "Long-Term Advantages of Ovarian Reserve Maintenance and Follicle Development Using Adipose Tissue-Derived Stem Cells in Ovarian Tissue Transplantation" Journal of Clinical Medicine 9, no. 9: 2980. https://doi.org/10.3390/jcm9092980
APA StyleCacciottola, L., Nguyen, T. Y. T., Chiti, M. C., Camboni, A., Amorim, C. A., Donnez, J., & Dolmans, M.-M. (2020). Long-Term Advantages of Ovarian Reserve Maintenance and Follicle Development Using Adipose Tissue-Derived Stem Cells in Ovarian Tissue Transplantation. Journal of Clinical Medicine, 9(9), 2980. https://doi.org/10.3390/jcm9092980