The Prognostic Model of Pre-Treatment Complete Blood Count (CBC) for Recurrence in Early Cervical Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Management
2.3. Selection of Prognostic Variables for Survival and Recurrence
2.4. Model Development
2.5. Concordance Index (C-Index) Calculation
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics and Univariate Analysis of Pre-Treatment CBC
3.2. Model Development
3.3. Risk Score as a Prognostic Marker in Each Traditional Risk Subgroup
3.4. Concordance Index (C-Index) Calculation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.J. Primary Management of Early Stage Cervical Cancer (IA1-IB) and Appropriate Selection of Adjuvant Therapy. J. Natl. Compr. Cancer Netw. 2008, 6, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Delgado, G.; Bundy, B.; Zaino, R.; Sevin, B.-U.; Creasman, W.T.; Major, F. Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. Gynecol. Oncol. 1990, 38, 352–357. [Google Scholar] [CrossRef]
- Zaino, R.J.; Ward, S.; Delgado, G.; Bundy, B.; Gore, H.; Fetter, G.; Ganjei, P.; Frauenhofer, E. Histopathologic predictors of the behavior of surgically treated stage IB squamous cell carcinoma of the cervix. A gynecologic oncology group study. Cancer 1992, 69, 1750–1758. [Google Scholar] [CrossRef]
- Burghardt, E.; Baltzer, J.; Tulusan, A.H.; Haas, J.; Baker, J. Results of surgical treatment of 1028 cervical cancers studied with volumetry. Cancer 1992, 70, 648–655. [Google Scholar] [CrossRef]
- Stehman, F.B.; Bundy, B.N.; DiSaia, P.J.; Keys, H.M.; Larson, J.E.; Fowler, W.C. Carcinoma of the cervix treated with radiation therapy I. A multi-variate analysis of prognostic variables in the gynecologic oncology group. Cancer 1991, 67, 2776–2785. [Google Scholar] [CrossRef]
- Pecorelli, S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynecol. Obstet. 2009, 105, 103–104. [Google Scholar] [CrossRef]
- Bipat, S.; Glas, A.S.; Van Der Velden, J.; Zwinderman, A.H.; Bossuyt, P.M.M.; Stoker, J. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: A systematic review. Gynecol. Oncol. 2003, 91, 59–66. [Google Scholar] [CrossRef]
- McMillan, D.C. Systemic inflammation, nutritional status and survival in patients with cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19, 716–722. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Vicker, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis. (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Wan, Q.-S.; Zhou, D.; Wang, T.; Hu, J.; He, Y.-T.; Yuan, H.-L.; Wang, Y.-Q.; Zhang, K.-H. A Simple-to-Use Nomogram for Predicting the Survival of Early Hepatocellular Carcinoma Patients. Front. Oncol. 2019, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Gönen, M.; Heller, G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika 2005, 92, 965–970. [Google Scholar] [CrossRef]
- Shirai, Y.; Shiba, H.; Sakamoto, T.; Horiuchi, T.; Haruki, K.; Fujiwara, Y.; Futagawa, Y.; Ohashi, T.; Yanaga, K. Preoperative platelet to lymphocyte ratio predicts outcome of patients with pancreatic ductal adenocarcinoma after pancreatic resection. Surgery 2015, 158, 360–365. [Google Scholar] [CrossRef]
- Krenn-Pilko, S.; Langsenlehner, U.; Thurner, E.-M.; Stojakovic, T.; Pichler, M.; Gerger, A.; Kapp, K.S.; Langsenlehner, T. The elevated preoperative platelet-to-lymphocyte ratio predicts poor prognosis in breast cancer patients. Br. J. Cancer 2014, 110, 2524–2530. [Google Scholar] [CrossRef]
- Okamura, Y.; Ashida, R.; Ito, T.; Sugiura, T.; Mori, K.; Uesaka, K. Preoperative Neutrophil to Lymphocyte Ratio and Prognostic Nutritional Index Predict Overall Survival After Hepatectomy for Hepatocellular Carcinoma. World J. Surg. 2015, 39, 1501–1509. [Google Scholar] [CrossRef]
- Moghadamyeghaneh, Z.; Hanna, M.H.; Carmichael, J.C.; Mills, S.D.; Pigazzi, A.; Stamos, M.J. Preoperative Leukocytosis in Colorectal Cancer Patients. J. Am. Coll. Surg. 2015, 221, 207–214. [Google Scholar] [CrossRef]
- Barber, E.L.; Rutstein, S.E.; Miller, W.C.; Gehrig, P.A. A preoperative personalized risk assessment calculator for elderly ovarian cancer patients undergoing primary cytoreductive surgery. Gynecol. Oncol. 2015, 139, 401–406. [Google Scholar] [CrossRef]
- Njølstad, T.S.; Engerud, H.; Werner, H.M.; Salvesen, H.B.; Trovik, J. Preoperative anemia, leukocytosis and thrombocytosis identify aggressive endometrial carcinomas. Gynecol. Oncol. 2013, 131, 410–415. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Liu, Y.; Wang, S.; Shang, P.; Gao, Y.; Chen, X. Preoperative Neutrophil-Lymphocyte Ratio Before Platelet-Lymphocyte Ratio Predicts Clinical Outcome in Patients With Cervical Cancer Treated with Initial Radical Surgery. Int. J. Gynecol. Cancer 2014, 24, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A.; Balkwill, F. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Sato, K.; Fujii, Y.; Ono, M.; Nomura, H.; Shizume, K. Production of interleukin 1 alpha-like factor and colony-stimulating factor by a squamous cell carcinoma of the thyroid (T3M-5) derived from a patient with hypercalcemia and leukocytosis. Cancer Res. 1987, 47, 6474–6480. [Google Scholar]
- Nasser, S.M.; Choudry, U.H.; Nielsen, G.P.; Ott, M.J. A leukemoid reaction in a patient with a dedifferentiated liposarcoma. Surgery 2001, 129, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Ono, K.; Ozeki, Y.; Tanaka, S.; Aida, S.; Okuno, Y. Production of Granulocyte--macrophage Colony-stimulating Factor in a Patient with Metastatic Chest Wall Large Cell Carcinoma. Jpn. J. Clin. Oncol. 1998, 28, 559–562. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wetzler, M.; Estrov, Z.; Talpaz, M.; Markowitz, A.; Gutterman, J.U.; Kurzrock, R. Granulocyte-macrophage colony-stimulating factor as a cause of paraneoplastic leukaemoid reaction in advanced transitional cell carcinoma. J. Intern. Med. 1993, 234, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, K.M.; Raman, A.K.; Tan, N.; Fakih, M.G. Leukemoid reaction in pancreatic cancer: A case report and review of the literature. JOP 2006, 7, 631–634. [Google Scholar]
- Mabuchi, S.; Matsumoto, Y.; Isohashi, F.; Yoshioka, Y.; Ohashi, H.; Morii, E.; Hamasaki, T.; Aozasa, K.; Mutch, D.G.; Kimura, T. Pretreatment leukocytosis is an indicator of poor prognosis in patients with cervical cancer. Gynecol. Oncol. 2011, 122, 25–32. [Google Scholar] [CrossRef]
- Hirasawa, K.; Kitamura, T.; Oka, T.; Matsushita, H. Bladder tumor producing granulocyte colony-stimulating factor and parathyroid hormone related protein. J. Urol. 2002, 167, 2130. [Google Scholar] [CrossRef]
- Takahashi, H.; Yasuda, A.; Ochi, N.; Sakamoto, M.; Takayama, S.; Wakasugi, T.; Funahashi, H.; Sawai, H.; Sato, M.; Akamo, Y.; et al. Granulocyte-colony stimulating factor producing rectal cancer. World J. Surg. Oncol. 2008, 6, 70. [Google Scholar] [CrossRef]
- Mabuchi, S.; Matsumoto, Y.; Morii, E.; Morishige, K.; Kimura, T. The First 2 Cases of Granulocyte Colony-stimulating Factor Producing Adenocarcinoma of the Uterine Cervix. Int. J. Gynecol. Pathol. 2010, 29, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Mabuchi, S.; Muraji, M.; Morii, E.; Kimura, T. Squamous Cell Carcinoma of the Uterine Cervix Producing Granulocyte Colony-Stimulating Factor. Int. J. Gynecol. Cancer 2010, 20, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Mishalian, I.; Bayuh, R.; Levy, L.; Zolotarov, L.; Michaeli, J.; Fridlender, Z.G. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol. Immunother. 2013, 62, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Märkl, B.; Wieberneit, J.; Kretsinger, H.; Mayr, P.; Anthuber, M.; Arnholdt, H.M.; Schenkirsch, G. Number of Intratumoral T Lymphocytes Is Associated With Lymph Node Size, Lymph Node Harvest, and Outcome in Node-Negative Colon Cancer. Am. J. Clin. Pathol. 2016, 145, 826–883. [Google Scholar] [CrossRef] [PubMed]
- Noble, F.; Mellows, T.; Matthews, L.H.M.; Bateman, A.C.; Harris, S.; Underwood, T.J.; Byrne, J.P.; Bailey, I.S.; Sharland, D.M.; Kelly, J.J.; et al. Tumour infiltrating lymphocytes correlate with improved survival in patients with oesophageal adenocarcinoma. Cancer Immunol. Immunother. 2016, 65, 651–662. [Google Scholar] [CrossRef]
- Vaupel, P.; Höckel, M.; Mayer, A. Detection and Characterization of Tumor Hypoxia Using pO2 Histography. Antioxid. Redox Signal. 2007, 9, 1221–1236. [Google Scholar] [CrossRef]
- Harris, A.L. Hypoxia—A key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47. [Google Scholar] [CrossRef]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 2012, 33, 207–214. [Google Scholar] [CrossRef]
- Menczer, J. Preoperative elevated platelet count and thrombocytosis in gynecologic malignancies. Arch. Gynecol. Obstet. 2017, 295, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.-F.; Huang, Y.; Lu, W.S.; Chen, Q.X. Preoperative platelet count in esophageal squamous cell carcinoma: Is it a prognostic factor? Langenbeck’s Arch. Surg. 2013, 398, 1115–1122. [Google Scholar] [CrossRef]
- Müller, B.G.; De Aretxabala, X.; Domingo, M.G. A Review of Recent Data in the Treatment of Gallbladder Cancer: What We Know, What We Do, and What Should Be Done. Am. Soc. Clin. Oncol. Educ. Book 2014, e165–e170. [Google Scholar] [CrossRef] [PubMed]
- Placke, T.; Kopp, H.-G.; Salih, H.R. Modulation of Natural Killer Cell Anti-Tumor Reactivity by Platelets. J. Innate Immun. 2011, 3, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Bochner, B.H.; Kattan, M.W.; Vora, K.C. Postoperative Nomogram Predicting Risk of Recurrence after Radical Cystectomy for Bladder Cancer. J. Clin. Oncol. 2006, 24, 3967–3972. [Google Scholar]
- Steyerberg, E.W.; Roobol, M.; Kattan, M.W.; Van Der Kwast, T.; De Koning, H.; Schroder, F. Prediction of Indolent Prostate Cancer: Validation and Updating of a Prognostic Nomogram. J. Urol. 2007, 177, 107–112. [Google Scholar] [CrossRef]
- Wierda, W.G.; O’Brien, S.; Wang, X.; Faderl, S.; Ferrajoli, A.; Do, K.-A.; Cortes, J.; Thomas, D.; Garcia-Manero, G.; Koller, C.; et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood 2007, 109, 4679–4685. [Google Scholar] [CrossRef]
- Alran, S.; Institut Curie Breast Cancer Study Group; De Rycke, Y.; Fourchotte, V.; Charitansky, H.; Laki, F.; Falcou, M.C.; Benamor, M.; Fréneaux, P.; Salmon, R.J.; et al. Validation and Limitations of Use of a Breast Cancer Nomogram Predicting the Likelihood of Non–Sentinel Node Involvement After Positive Sentinel Node Biopsy. Ann. Surg. Oncol. 2007, 14, 2195–2201. [Google Scholar]
- Karakiewicz, P.I.; Briganti, A.; Chun, F.K.-H.; Trinh, Q.-D.; Perrotte, P.; Ficarra, V.; Cindolo, L.; De La Taille, A.; Tostain, J.; Mulders, P.F.; et al. Multi-Institutional Validation of a New Renal Cancer–Specific Survival Nomogram. J. Clin. Oncol. 2007, 25, 1316–1322. [Google Scholar] [CrossRef]
- Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How To Build and Interpret a Nomogram for Cancer Prognosis. J. Clin. Oncol. 2008, 26, 1364–1370. [Google Scholar] [CrossRef]
- Gunter, M.J.; Stolzenberg-Solomon, R.Z.; Cross, A.J.; Leitzmann, M.F.; Weinstein, S.; Wood, R.J.; Virtamo, J.; Taylor, P.R.; Albanes, D.; Sinha, R. A Prospective Study of Serum C-Reactive Protein and Colorectal Cancer Risk in Men. Cancer Res. 2006, 66, 2483–2487. [Google Scholar] [CrossRef]
- Shiu, Y.-C.; Lin, J.-K.; Huang, C.-J.; Jiang, J.-K.; Wang, L.-W.; Huang, H.-C.; Yang, S.-H. Is C-Reactive Protein a Prognostic Factor of Colorectal Cancer? Dis. Colon Rectum 2008, 51, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Siemes, C.; Visser, L.E.; Coebergh, J.-W.W.; Splinter, T.A.; Witteman, J.C.; Uitterlinden, A.G.; Hofman, A.; Pols, H.A.; Stricker, B.H. C-Reactive Protein Levels, Variation in the C-Reactive Protein Gene, and Cancer Risk: The Rotterdam Study. J. Clin. Oncol. 2006, 24, 5216–5222. [Google Scholar] [CrossRef] [PubMed]
- Khandavilli, S.D.; Ceallaigh, P.Ó.; Lloyd, C.J.; Whitaker, R. Serum C-reactive protein as a prognostic indicator in patients with oral squamous cell carcinoma. Oral Oncol. 2009, 45, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Piotrowski, L.; Grabowska, Z. Serum Levels of IL-lβ, IL-6, TNF-α, sTNF-RI and CRP in Patients with oral cavity cancer. Pathol. Oncol. Res. 1997, 3, 126–129. [Google Scholar] [CrossRef]
Total (N = 1443) | ||
---|---|---|
Age (years) | 48 | (41–57) |
FIGO stage | ||
IB1/IIA | 1274 | (88.3%) |
IB2 | 167 | (11.6%) |
Missing data | 2 | (0.1%) |
Histology | ||
Squamous cell carcinoma | 1089 | (75.5%) |
Adenocarcinoma | 277 | (19.2%) |
Adenosquamous carcinoma | 75 | (5.2%) |
Missing data | 2 | (0.1%) |
Lymphovascular space invasion | ||
Negative | 791 | (54.8%) |
Positive | 562 | (38.9%) |
Missing data | 90 | (6.2%) |
Depth of stromal invasion | ||
Superficial 1/3 | 445 | (30.8%) |
Middle 1/3 | 380 | (26.3%) |
Deeper 1/3 | 577 | (40.0%) |
Missing data | 41 | (2.8%) |
Depth of stromal invasion | ||
Superficial 1/2 | 642 | (44.5%) |
Deeper 1/2 | 758 | (52.5%) |
Missing data | 43 | (3.0%) |
Lymph node metastasis | ||
No lymph node metastasis | 1177 | (81.6%) |
Pelvic lymph node metastasis | 239 | (16.6%) |
Para-aortic lymph node metastasis | 22 | (1.5%) |
Missing data | 5 | (0.3%) |
Parametrial invasion | ||
Negative | 1323 | (91.7%) |
Positive | 116 | (8.0%) |
Missing data | 4 | (0.3%) |
Resection margin free | ||
Resection margin negative | 1381 | (95.7%) |
Resection margin (carcinoma in situ) | 16 | (1.1%) |
Resection margin (cancer) | 44 | (3.0%) |
Missing data | 2 | (0.1%) |
Tumor size (cm) | 2.7 | (1.6–4.0) |
White blood cell (×1000 cells/mm3) | 6.2 | (5.2–7.5) |
Lymphocyte (×10%) | 1.9 | (1.5–2.3) |
Monocyte (×10%) | 0.4 | (0.3–0.5) |
Neutrophil (×1000 cells/mm2) | 3.6 | (2.7–4.6) |
Glucose (milligrams/deciliter) | 100.0 | (91.0–111.0) |
Hemoglobin (grams/deciliter) | 12.7 | (11.8–13.4) |
Platelet (×10,000 cells/mm2) | 25.2 | (21.5–29.8) |
Neutrophil-lymphocyte ratio (NLR) | 1.9 | (1.4–2.6) |
Platelet-lymphocyte ratio (PLR) | 13.5 | (10.6–17.0) |
Hazard Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Lymphocyte | 0.74 | 0.55 | 0.99 | 0.046 |
Platelet | 1.03 | 1.01 | 1.05 | 0.009 |
Hazard Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower Limit | Upper Limit | |||
WBC § | 0.60 | 0.41 | 0.88 | 0.010 |
Neutrophil | 1.66 | 1.11 | 2.49 | 0.014 |
Platelet | 1.05 | 1.02 | 1.08 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, J.J.; Lim, M.C.; Kim, M.-H.; Kim, Y.H.; Song, E.S.; Seong, S.J.; Suh, D.H.; Lee, J.-M.; Lee, C.; Choi, C.H. The Prognostic Model of Pre-Treatment Complete Blood Count (CBC) for Recurrence in Early Cervical Cancer. J. Clin. Med. 2020, 9, 2960. https://doi.org/10.3390/jcm9092960
Noh JJ, Lim MC, Kim M-H, Kim YH, Song ES, Seong SJ, Suh DH, Lee J-M, Lee C, Choi CH. The Prognostic Model of Pre-Treatment Complete Blood Count (CBC) for Recurrence in Early Cervical Cancer. Journal of Clinical Medicine. 2020; 9(9):2960. https://doi.org/10.3390/jcm9092960
Chicago/Turabian StyleNoh, Joseph J., Myong Cheol Lim, Moon-Hong Kim, Yun Hwan Kim, Eun Seop Song, Seok Ju Seong, Dong Hoon Suh, Jong-Min Lee, Chulmin Lee, and Chel Hun Choi. 2020. "The Prognostic Model of Pre-Treatment Complete Blood Count (CBC) for Recurrence in Early Cervical Cancer" Journal of Clinical Medicine 9, no. 9: 2960. https://doi.org/10.3390/jcm9092960
APA StyleNoh, J. J., Lim, M. C., Kim, M.-H., Kim, Y. H., Song, E. S., Seong, S. J., Suh, D. H., Lee, J.-M., Lee, C., & Choi, C. H. (2020). The Prognostic Model of Pre-Treatment Complete Blood Count (CBC) for Recurrence in Early Cervical Cancer. Journal of Clinical Medicine, 9(9), 2960. https://doi.org/10.3390/jcm9092960