Early Outcomes of Percutaneous Pulmonary Valve Implantation with Pulsta and Melody Valves: The First Report from Korea
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. The Valves
2.2.1. The Melody Valve
2.2.2. The Pulsta Valve
2.3. Clinical Assessment
2.4. Statistical Analysis
2.5. Ethics Statement
3. Results
3.1. Patient Characteristics
3.2. Procedural Characteristics
3.3. Periprocedural Outcomes and Complications during Follow-Up
3.4. Functional Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Warnes, C.A.; Williams, R.G.; Bashore, T.M.; Child, J.S.; Connolly, H.M.; Dearani, J.A.; del Nido, P.; Fasules, J.W.; Graham, T.P., Jr.; Hijazi, Z.M.; et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: A report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). J. Am. Coll. Cardiol. 2008, 52, e143–e263. [Google Scholar] [PubMed] [Green Version]
- Andresen, B.; Andersen, M.H.; Lindberg, H.; Døhlen, G.; Fosse, E. Perceived health after percutaneous pulmonary valve implantation: In-depth interviews of patients and next-of-kin. BMJ Open 2014, 4, e005102. [Google Scholar] [CrossRef] [Green Version]
- Bonhoeffer, P.; Boudjemline, Y.; Saliba, Z.; Merckx, J.; Aggoun, Y.; Bonnet, D.; Acar, P.; le Bidois, J.; Sidi, D.; Kachaner, J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000, 356, 1403–1405. [Google Scholar] [CrossRef]
- Kheiwa, A.; Divanji, P.; Mahadevan, V.S. Transcatheter pulmonary valve implantation: Will it replace surgical pulmonary valve replacement? Expert Rev. Cardiovasc. Ther. 2018, 16, 197–207. [Google Scholar] [CrossRef]
- Ran, L.; Wang, W.; Secchi, F.; Xiang, Y.; Shi, W.; Huang, W. Percutaneous pulmonary valve implantation in patients with right ventricular outflow tract dysfunction: A systematic review and meta-analysis. Ther. Adv. Chronic Dis. 2019, 10, 2040622319857635. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, S.; Ewert, P.; Eicken, A.; Hager, A.; Hörer, J.; Cleuziou, J.; Meierhofer, C.; Tanase, D. Munich comparative study. Circ. Cardiovasc. Interv. 2020, 13, e008963. [Google Scholar] [CrossRef]
- Cheatham, J.P.; Hellenbrand, W.E.; Zahn, E.M.; Jones, T.K.; Berman, D.P.; Vincent, J.A.; McElhinney, D.B. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the us melody valve investigational device exemption trial. Circulation 2015, 131, 1960–1970. [Google Scholar] [CrossRef] [Green Version]
- Nordmeyer, J.; Ewert, P.; Gewillig, M.; AlJufan, M.; Carminati, M.; Kretschmar, O.; Uebing, A.; Dähnert, I.; Röhle, R.; Schneider, H.; et al. Acute and midterm outcomes of the post-approval melody registry: A multicentre registry of transcatheter pulmonary valve implantation. Eur. Heart J. 2019, 40, 2255–2264. [Google Scholar] [CrossRef]
- Georgiev, S.; Ewert, P.; Tanase, D.; Hess, J.; Hager, A.; Cleuziou, J.; Meierhofer, C.; Eicken, A. A low residual pressure gradient yields excellent long-term outcome after percutaneous pulmonary valve implantation. JACC. Cardiovasc. Interv. 2019, 12, 1594–1603. [Google Scholar] [CrossRef]
- Bjorn, C.; Steven, B.; Werner, B.; Ruth, H.; Els, T.; Derize, B.; Benedicte, E.; Marc, G. Up to 11 years of experience with the melody valved stent in the right ventricular outflow tract. Eur. Interv. J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2018, 14, e988–e994. [Google Scholar]
- Bergersen, L.; Benson, L.N.; Gillespie, M.J.; Cheatham, S.L.; Crean, A.M.; Hor, K.N.; Horlick, E.M.; Lung, T.-H.; McHenry, B.T.; Osten, M.D.; et al. Harmony feasibility trial: Acute and short-term outcomes with a self-expanding transcatheter pulmonary valve. JACC Cardiovasc. Interv. 2017, 10, 1763–1773. [Google Scholar] [CrossRef]
- Cao, Q.L.; Kenny, D.; Zhou, D.; Pan, W.; Guan, L.; Ge, J.; Hijazi, Z.M. Early clinical experience with a novel self-expanding percutaneous stent-valve in the native right ventricular outflow tract. Catheter. Cardiovasc. Interv. 2014, 84, 1131–1137. [Google Scholar] [CrossRef]
- Kim, G.B.; Kwon, B.S.; Lim, H.G. First in human experience of a new self-expandable percutaneous pulmonary valve implantation using knitted nitinol-wire and tri-leaflet porcine pericardial valve in the native right ventricular outflow tract. Catheter. Cardiovasc. Intervent. Off. J. Soc. Card. Angiogr. Intervent. 2017, 89, 906–909. [Google Scholar] [CrossRef]
- Kim, G.B.; Song, M.K.; Bae, E.J.; Park, E.A.; Lee, W.; Lim, H.G.; Kim, Y.J. Successful feasibility human trial of a new self-expandable percutaneous pulmonary valve (pulsta valve) implantation using knitted nitinol wire backbone and trileaflet α-gal-free porcine pericardial valve in the native right ventricular outflow tract. Circ. Cardiovasc. Intervent. 2018, 11, e006494. [Google Scholar] [CrossRef] [PubMed]
- Endorsed by the Association for European Paediatric Cardiology; Authors/Task Force Members; Baumgartner, H.; Bonhoeffer, P.; de Groot, N.M.S.; de Haan, F.; Deanfield, J.E.; Galie, N.; Gatzoulis, M.A.; Gohlke-Baerwolf, C.; et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010): The task force on the management of grown-up congenital heart disease of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2915–2957. [Google Scholar]
- Silversides, C.K.; Salehian, O.; Oechslin, E.; Schwerzmann, M.; Vonder Muhll, I.; Khairy, P.; Horlick, E.; Landzberg, M.; Meijboom, F.; Warnes, C.; et al. Canadian cardiovascular society 2009 consensus conference on the management of adults with congenital heart disease: Complex congenital cardiac lesions. Can. J. Cardiol. 2010, 26, e98–e117. [Google Scholar] [CrossRef] [Green Version]
- Zahn, E.M.; Hellenbrand, W.E.; Lock, J.E.; McElhinney, D.B. Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the u.S. Clinical trial. J. Am. Coll. Cardiol. 2009, 54, 1722–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElhinney, D.B.; Cheatham, J.P.; Jones, T.K.; Lock, J.E.; Vincent, J.A.; Zahn, E.M.; Hellenbrand, W.E. Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: Patient-related and procedural risk factors in the us melody valve trial. Circ. Cardiovasc. Interv. 2011, 4, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Straten, A.; Vliegen, H.W.; Hazekamp, M.G.; Bax, J.J.; Schoof, P.H.; Ottenkamp, J.; van der Wall, E.E.; de Roos, A. Right ventricular function after pulmonary valve replacement in patients with tetralogy of fallot. Radiology 2004, 233, 824–829. [Google Scholar] [CrossRef]
- Alper Gursu, H.; Varan, B.; Sade, E.; Erdogan, I.; Ozkan, M. Analysis of right ventricle function with strain imaging before and after pulmonary valve replacement. Anal. Right Ventricle Funct. Strain Imaging Before After Pulm. Valve Repl. 2016, 23, 195–201. [Google Scholar]
- Coats, L.; Khambadkone, S.; Derrick, G.; Sridharan, S.; Schievano, S.; Mist, B.; Jones, R.; Deanfield, J.E.; Pellerin, D.; Bonhoeffer, P.; et al. Physiological and clinical consequences of relief of right ventricular outflow tract obstruction late after repair of congenital heart defects. Circulation 2006, 113, 2037–2044. [Google Scholar] [CrossRef] [Green Version]
- Coats, L.; Khambadkone, S.; Derrick, G.; Hughes, M.; Jones, R.; Mist, B.; Pellerin, D.; Marek, J.; Deanfield, J.E.; Bonhoeffer, P.; et al. Physiological consequences of percutaneous pulmonary valve implantation: The different behaviour of volume- and pressure-overloaded ventricles. Eur. Heart J. 2007, 28, 1886–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lurz, P.; Puranik, R.; Nordmeyer, J.; Muthurangu, V.; Hansen, M.S.; Schievano, S.; Marek, J.; Bonhoeffer, P.; Taylor, A.M. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: Contribution of septal motion and interventricular mechanical delay. Eur. Heart J. 2009, 30, 2266–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romeih, S.; Kroft, L.J.; Bokenkamp, R.; Schalij, M.J.; Grotenhuis, H.; Hazekamp, M.G.; Groenink, M.; de Roos, A.; Blom, N.A. Delayed improvement of right ventricular diastolic function and regression of right ventricular mass after percutaneous pulmonary valve implantation in patients with congenital heart disease. Am. Heart J. 2009, 158, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Nordmeyer, J.; Khambadkone, S.; Coats, L.; Schievano, S.; Lurz, P.; Parenzan, G.; Taylor, A.M.; Lock, J.E.; Bonhoeffer, P. Risk stratification, systematic classification, and anticipatory management strategies for stent fracture after percutaneous pulmonary valve implantation. Circulation 2007, 115, 1392–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lurz, P.; Coats, L.; Khambadkone, S.; Nordmeyer, J.; Boudjemline, Y.; Schievano, S.; Muthurangu, V.; Lee, T.Y.; Parenzan, G.; Derrick, G.; et al. Percutaneous pulmonary valve implantation: Impact of evolving technology and learning curve on clinical outcome. Circulation 2008, 117, 1964–1972. [Google Scholar] [CrossRef] [Green Version]
- Nordmeyer, J.; Coats, L.; Lurz, P.; Lee, T.Y.; Derrick, G.; Rees, P.; Cullen, S.; Taylor, A.M.; Khambadkone, S.; Bonhoeffer, P.; et al. Percutaneous pulmonary valve-in-valve implantation: A successful treatment concept for early device failure. Eur. Heart J. 2008, 29, 810–815. [Google Scholar] [CrossRef]
- McElhinney, D.B.; Hellenbrand, W.E.; Zahn, E.M.; Jones, T.K.; Cheatham, J.P.; Lock, J.E.; Vincent, J.A. Short-and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter us melody valve trial. Circulation 2010, 122, 507–516. [Google Scholar] [CrossRef]
- Eicken, A.; Ewert, P.; Hager, A.; Peters, B.; Fratz, S.; Kuehne, T.; Busch, R.; Hess, J.; Berger, F. Percutaneous pulmonary valve implantation: Two-centre experience with more than 100 patients. Eur. Heart J. 2011, 32, 1260–1265. [Google Scholar] [CrossRef] [Green Version]
- Butera, G.; Milanesi, O.; Spadoni, I.; Piazza, L.; Donti, A.; Ricci, C.; Agnoletti, G.; Pangrazi, A.; Chessa, M.; Carminati, M.; et al. Melody transcatheter pulmonary valve implantation. Results from the registry of the italian society of pediatric cardiology. Cathet. Cardiovasc. Interv. Off. J. Soc. Cardiac. Angiogr. Interv. 2013, 81, 310–316. [Google Scholar] [CrossRef]
- Shahanavaz, S.; Asnes Jeremy, D.; Grohmann, J.; Qureshi Athar, M.; Rome Jonathan, J.; Tanase, D.; Crystal Matthew, A.; Latson Larry, A.; Morray Brian, H.; Hellenbrand, W.; et al. Intentional fracture of bioprosthetic valve frames in patients undergoing valve-in-valve transcatheter pulmonary valve replacement. Circ. Cardiovasc. Interv. 2018, 11, e006453. [Google Scholar] [CrossRef]
- Goldstein, B.H.; Bergersen, L.; Armstrong, A.K.; Boe, B.A.; El-Said, H.; Porras, D.; Shahanavaz, S.; Leahy, R.A.; Kreutzer, J.; Zampi, J.D.; et al. Adverse events, radiation exposure, and reinterventions following transcatheter pulmonary valve replacement. J. Am. Coll. Cardiol. 2020, 75, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Balzer, D. Pulmonary valve replacement for tetralogy of fallot. Methodist. Debakey Cardiovasc. J. 2019, 15, 122–132. [Google Scholar] [PubMed]
- Gareth, J.M.; Pimpak, P.; Worakan, P.; Eric, R.; Kothandam, S.; Mahesh, K.; Indriwanto, S.; Kevin, P.W.; Damien, K.; John, T.; et al. Medium-term results of percutaneous pulmonary valve implantation using the venus p-valve: International experience. Eur. Intervent. J. EuroPCR Collab. Work. Group Intervent. Cardiol. Eur. Soc. Cardiol. 2019, 14, 1363–1370. [Google Scholar]
- Promphan, W.; Prachasilchai, P.; Siripornpitak, S.; Qureshi, S.A.; Layangool, T. Percutaneous pulmonary valve implantation with the venus p-valve: Clinical experience and early results. Cardiol. Young 2016, 26, 698–710. [Google Scholar] [CrossRef] [Green Version]
- Haas, N.A.; Vcasna, R.; Laser, K.T.; Blanz, U.; Herrmann, F.E.; Jakob, A.; Fischer, M.; Kanaan, M.; Lehner, A. The standing of percutaneous pulmonary valve implantation compared to surgery in a non-preselected cohort with dysfunctional right ventricular outflow tract-reasons for failure and contraindications. J. Cardiol. 2019, 74, 217–222. [Google Scholar] [CrossRef]
n/N (%) or Mean ± SD (Range) | |
---|---|
Age, years | 27.2 ± 13.5 (9.5–75) |
Female | 12/42 (28.6) |
Weight, kg | 61.8 ± 14.3 (31–92) |
Height, cm | 173.8 ± 7.4 (124–185) |
Prior endocarditis | 3/42 (7.1) |
Underlying diagnosis | |
Tetralogy of Fallot | 40/42 (95.2) |
Pulmonary atresia with ventricular septal defect | 2/42 (4.8) |
RVOT anatomy prior to valve implantation | |
Native RVOT | 12/42 (28.6) |
Bioprosthetic valve | 24/42 (57.1) |
Valved conduit | 4/42 (9.5) |
Homograft | 2/42 (4.8) |
Percutaneous pulmonary valve implant indication | |
RVOT obstruction | 15/42 (35.7) |
Mixed PR and obstruction | 14/42 (33.3) |
PR | 13/42 (31.0) |
Cardiopulmonary exercise function | |
Peak oxygen consumption, mL/kg/min | 28.1 ± 4.7 (19.4–36.1) |
Predicted peak oxygen consumption, % | 57.4 ± 9.0 (36–73) |
Oxygen consumption at the AT, mL/kg/min | 8.0 ± 1.4 (5.5–10.3) |
Maximum workload, W | 11.1 ± 1.5 (7.4–12.4) |
n/N (%) or Mean ± SD (Range) | |
---|---|
General anesthesia | 41/42 (97.6) |
RVOT pre-stenting | 10/42 (23.8) |
Stent placed at the time of the procedure | 9/10 |
Stent placed prior to the day of the procedure | 1/10 |
Type of stent | |
Palmaz 4014 Bare metal stent | 8/10 |
CP covered stent | 2/10 |
Size of the implanted Melody valve (n = 29) | |
22 mm | 29/29 (100) |
Minimal diameter prior to pre-dilation | 20.5 ± 2.9 (12–23) |
Minimal diameter following pre-dilation | 22.1 ± 0.6 (21.5–23) |
Size of the implanted Pulsta valve (n = 13) | |
26 mm | 1/13 (7.7) |
28 mm | 3/13 (23.1) |
30 mm | 2/13 (15.4) |
32 mm | 7/13 (53.8) |
Valve-in-valve (previously implanted bioprosthesis) procedure | 28/42 (66.7) |
Successful intentional BPV frame fracture | 8/42 (19.0) |
Length of procedure (min) | 95.3 ± 35.8 (61–180) |
Fluoroscopy time (min) | 35.2 ± 10.1 (18.1–57.0) |
n/N (%) or Mean ± SD | ||
---|---|---|
Procedural success rate | 42/42 (100.0) | |
Length of hospitalization, days | 4.6 ± 0.7 (3–7) | |
Procedural complications | ||
Major | Valve dislocation | 0 (0.0) |
Conduit/RVOT rupture requiring operation | 0 (0.0) | |
Intermediate | Arrhythmia requiring treatment | 0 (0.0) |
Coronary compression | 0 (0.0) | |
Stent dislocation | 1 (2.4) | |
Minor | Contained conduit rupture | 1 (2.4) |
Mild inguinal hematoma | 1 (2.4) | |
Periprocedural and late mortality | 1/42 (2.4) | |
Endocarditis | 0/42 (0.0) | |
Stent fracture 1 | 1/42 (2.4) |
Baseline | Day 30 | 6 Months | 1 Year | 2 Years | ||
---|---|---|---|---|---|---|
Peak systolic gradient over the RVOT (mmHg) | Melody | 51.3 ± 11.5 | 16.7 ± 3.3 | 16.5 ± 4.5 | 17.5 ± 5.8 | 23.0 ± 6.6 |
(n = 29) | (n = 29) | (n = 22) | (n = 12) | (n = 8) | ||
Pulsta | 14.2 ± 1.5 | 11.3 ± 1.2 | 10.0 ± 0.0 | 11.7 ± 1.2 | ||
(n = 13) | (n = 13) | (n = 4) | (n = 4) | |||
p-value | <0.001 | 0.25 | 0.32 | 0.31 | ||
RVSP across the tricuspid valve (mmHg) | Melody | 70.0 ± 16.8 | 41.3 ± 17.8 | |||
(n = 29) | (n = 29) | |||||
Pulsta | 41.8 ± 2.4 (n = 13) | 39.0 ± 1.2 (n = 13) | 40.7 ± 1.2 (n = 4) | |||
PRF(%) * | Melody | 17.1 ± 13.6 (n = 26) | 3.8 ± 5.3 (n = 12) | |||
Pulsta | 46.7 ± 8.0 (n = 13) | 4.7 ± 3.1 (n = 4) | ||||
p-value | 0.02 | 0.45 | ||||
RVEDVi (mL/m2) * | Melody | 137.5 ± 31.1 (n = 26) | 122.2 ± 8.3 (n = 12) | |||
Pulsta | 166.1 ± 11.9 (n = 13) | 123.6 ± 12.4 (n = 4) | ||||
p-value | 0.04 | 0.37 | ||||
RVEF (%) * | 44.3±11.6 (n = 34) | 51.3 ± 5.1 (n = 12) | ||||
NYHA class | ||||||
Class I | 6/42 (14.3) | 31/42 (73.8) | 19/23 (82.6) | 14/16 (87.5) | 8/8 (100.0) | |
Class II | 24/42 (57.1) | 11/42 (26.2) | 4/23 (17.4) | 2/16 (12.5) | 0/8 (0.0) | |
Class III | 11/42 (26.2) | 0/42 (0.0) | 0/26 (0.0) | 0/16 (0.0) | 0/8 (0.0) | |
Class IV | 1/42 (2.4) | 0/42 (0.0) | 0/26 (0.0) | 0/16 (0.0) | 0/8 (0.0) | |
Peak oxygen consumption (mL O2/min/kg bodyweight) | 28.1 ± 4.7 (n = 31) | 31.8 ± 4.0 (n = 7) | ||||
Anaerobic threshold (mL/min/kg) | 8.0 ± 1.4 (n = 31) | 9.1 ± 1.1 (n = 7) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.Y.; Jung, J.W.; Jung, S.Y.; Shin, J.I.; Eun, L.Y.; Kim, N.K.; Choi, J.Y. Early Outcomes of Percutaneous Pulmonary Valve Implantation with Pulsta and Melody Valves: The First Report from Korea. J. Clin. Med. 2020, 9, 2769. https://doi.org/10.3390/jcm9092769
Kim AY, Jung JW, Jung SY, Shin JI, Eun LY, Kim NK, Choi JY. Early Outcomes of Percutaneous Pulmonary Valve Implantation with Pulsta and Melody Valves: The First Report from Korea. Journal of Clinical Medicine. 2020; 9(9):2769. https://doi.org/10.3390/jcm9092769
Chicago/Turabian StyleKim, Ah Young, Jo Won Jung, Se Yong Jung, Jae Il Shin, Lucy Youngmin Eun, Nam Kyun Kim, and Jae Young Choi. 2020. "Early Outcomes of Percutaneous Pulmonary Valve Implantation with Pulsta and Melody Valves: The First Report from Korea" Journal of Clinical Medicine 9, no. 9: 2769. https://doi.org/10.3390/jcm9092769
APA StyleKim, A. Y., Jung, J. W., Jung, S. Y., Shin, J. I., Eun, L. Y., Kim, N. K., & Choi, J. Y. (2020). Early Outcomes of Percutaneous Pulmonary Valve Implantation with Pulsta and Melody Valves: The First Report from Korea. Journal of Clinical Medicine, 9(9), 2769. https://doi.org/10.3390/jcm9092769