Identification of a Clinical Cutoff Value for Multiplex KRASG12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection and DNA Isolation
2.2. Droplet Digital Polymerase Chain Reaction (ddPCR)
2.3. Sanger Sequencing
2.4. Peptide Nucleic Acid (PNA)-Clamping Assay (PCR with PNA-Mediated Clamping)
2.5. Statistical Analysis
3. Results
3.1. Detection of KRASG12/G13 Mutation by ddPCR, Sanger Sequencing and PNA Clamping Assay
3.2. Receiver Operating Characteristic (ROC) Curves in Determination of KRASG12/G13 Mutation by ddPCR
3.3. Repetitive Measurement of KRASG12/G13 Mutation by ddPCR
3.4. Comparison of KRASG12/G13 Mutation Analysis by ddPCR, Sanger Sequencing, and PNA-Clamping Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Malafosse, R.; Penna, C.; Cunha, A.S.; Nordlinger, B. Surgical management of hepatic metastases from colorectal malignancies. Ann. Oncol. 2001, 12, 887–894. [Google Scholar] [CrossRef]
- Alcaide, M.; Cheung, M.; Bushell, K.; Arthur, S.E.; Wong, H.L.; Karasinska, J.; Renouf, D.; Schaeffer, D.F.; McNamara, S.; Tertre, M.C.D.; et al. A Novel Multiplex Droplet Digital PCR Assay to Identify and Quantify KRAS Mutations in Clinical Specimens. J. Mol. Diagn. 2019, 21, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.-Y.; Wei, Y.; Chen, J.-W.; Chang, W.-J.; Ye, L.-C.; Zhu, D.-X.; Xu, J.-M. Anti-EGFR and anti-VEGF agents: Important targeted therapies of colorectal liver metastases. World J. Gastroenterol. 2014, 20, 4263–4275. [Google Scholar] [CrossRef]
- Matsunaga, M.; Kaneta, T.; Miwa, K.; Ichikawa, W.; Fujita, K.-I.; Nagashima, F.; Furuse, J.; Kage, M.; Akagi, Y.; Sasaki, Y. A comparison of four methods for detecting KRAS mutations in formalin-fixed specimens from metastatic colorectal cancer patients. Oncol. Lett. 2016, 12, 150–156. [Google Scholar] [CrossRef][Green Version]
- Rakhit, C.; Ottolini, B.; Jones, C.; Pringle, J.; Shaw, J.; Martins, L.M. Peptide nucleic acid clamping to improve the sensitivity of Ion Torrent-based detection of an oncogenic mutation in KRAS. Matters 2017, 3, e201706000001. [Google Scholar] [CrossRef][Green Version]
- Lee, H.S.; Kim, W.H.; Kwak, Y.; Koh, J.; Bae, J.M.; Kim, K.-M.; Chang, M.S.; Han, H.S.; Kim, J.M.; Kim, H.W. Molecular testing for gastrointestinal cancer. J. Pathol. Transl. Med. 2017, 51, 103–121. [Google Scholar] [CrossRef][Green Version]
- Miotke, L.; Lau, B.T.; Rumma, R.T.; Ji, H.P. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal. Chem. 2014, 86, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Williams, J.; Gartner, K.; Phillips, R.; Hurst, J.; Frater, J. Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, ‘definetherain’. J. Virol. Methods 2014, 202, 46–53. [Google Scholar] [CrossRef]
- Trypsteen, W.; Vynck, M.; De Neve, J.; Bonczkowski, P.; Kiselinova, M.; Malatinkova, E.; Vervisch, K.; Thas, O.; Vandekerckhove, L.; De Spiegelaere, W. ddpcRquant: Threshold determination for single channel droplet digital PCR experiments. Anal. Bioanal. Chem. 2015, 407, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Hughesman, C.B.; Lu, X.J.D.; Liu, K.Y.P.; Zhu, Y.; Poh, C.F.; Haynes, C. A Robust Protocol for Using Multiplexed Droplet Digital PCR to Quantify Somatic Copy Number Alterations in Clinical Tissue Specimens. PLoS ONE 2016, 11, e0161274. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wang, S.; Fu, B.; Wang, J. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vanova, B.; Kalman, M.; Jasek, K.; Kasubova, I.; Burjanivova, T.; Farkasova, A.; Kruzliak, P.; Busselberg, D.; Plank, L.; Lasabova, Z. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin. Exp. Med. 2019, 19, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Laurent-Puig, P.; Pekin, D.; Normand, C.; Kotsopoulos, S.K.; Nizard, P.; Perez-Toralla, K.; Rowell, R.; Olson, J.; Srinivasan, P.; Le Corre, D.; et al. Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clin. Cancer Res. 2015, 21, 1087–1097. [Google Scholar] [CrossRef]
- Yang, W.; Shelton, D.N.; Berman, J.R.; Zhang, B.; Cooper, S.; Tzonev, S.; Hefner, E.; Regan, J.F. Droplet digital™ PCR: Multiplex detection of KRAS mutations in formalin-fixed, paraffin-embedded colorectal cancer samples. Biotechniques 2015, 58, 205–206. [Google Scholar] [CrossRef]
- Pinheiro, L.B.; Coleman, V.A.; Hindson, C.M.; Herrmann, J.; Hindson, B.J.; Bhat, S.; Emslie, K.R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 2012, 84, 1003–1011. [Google Scholar] [CrossRef]
- Gerdes, L.; Iwobi, A.; Busch, U.; Pecoraro, S. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol. Detect. Quantif. 2016, 7, 9–20. [Google Scholar] [CrossRef]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Messa, F.; Tonissi, F.; Millo, E.; Bracco, E.; Ungari, S.; Lattanzio, L.; Merlano, M.; Damonte, G.; Lo Nigro, C. A PNA-mediated clamping PCR for routine detection of KRAS mutations in colorectal carcinoma. Int. J. Biol. Markers 2014, 29, e55–e61. [Google Scholar] [CrossRef]
- Dinu, D.; Dobre, M.; Panaitescu, E.; Bîrlă, R.; Iosif, C.; Hoara, P.; Caragui, A.; Boeriu, M.; Constantinoiu, S.; Ardeleanu, C. Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J. Med. Life 2014, 7, 581–587. [Google Scholar] [PubMed]
KRAS Mutant CRAC & Non-Neoplastic Colon (0.12% Cutoff) | KRAS Mutant and KRAS Wild CRAC & Non-Neoplastic Colon (7.9% Cutoff) | |
---|---|---|
Sensitivity | 100.0% (89.11–100.00) | 84.38% (67.21–94.72) |
Specificity | 30.61% (18.25–45.42) | 97.96% (89.15–99.95) |
PPV | 48.48% (43.87–53.13) | 96.43% (79.42–99.47) |
NPV | 100.0% (100.00–100.00) | 90.57% (81.09–97.23) |
Sample ID | First KRAS ddPCR | Second KRAS ddPCR | Third KRAS ddPCR | Mean KRAS ddPCR | ||||
---|---|---|---|---|---|---|---|---|
MAF | MAF | MAF | MAF | |||||
T1 | 0 | Wild-type | 0 | Wild-type | 0 | Wild-type | 0 | Wild-type |
T2 | 0 | Wild-type | 0.07 | Wild-type | 0 | Wild-type | 0.02 | Wild-type |
T3 | 0.05 | Wild-type | 0 | Wild-type | 0 | Wild-type | 0.02 | Wild-type |
T4 | 0.05 | Wild-type | 0 | Wild-type | 0 | Wild-type | 0.02 | Wild-type |
T5 | 0.04 | Wild-type | 0 | Wild-type | 0.04 | Wild-type | 0.03 | Wild-type |
T6 | 0 | Wild-type | 0 | Wild-type | 0.11 | Wild-type | 0.04 | Wild-type |
T7 | 0.04 | Wild-type | 0.04 | Wild-type | 0.09 | Wild-type | 0.05 | Wild-type |
T8 | 0 | Wild-type | 0.19 | Wild-type | 0 | Wild-type | 0.06 | Wild-type |
T9 | 0.08 | Wild-type | 0.13 | Wild-type | 0 | Wild-type | 0.07 | Wild-type |
T10 | 0 | Wild-type | 0.14 | Wild-type | 0.1 | Wild-type | 0.08 | Wild-type |
T11 | 0.09 | Wild-type | 0.09 | Wild-type | 0.07 | Wild-type | 0.09 | Wild-type |
T12 | 0 | Wild-type | 0.15 | Wild-type | 0.11 | Wild-type | 0.09 | Wild-type |
T13 | 0.1 | Wild-type | 0.07 | Wild-type | 0.1 | Wild-type | 0.09 | Wild-type |
T14 | 0 | Wild-type | 0.13 | Wild-type | 0.19 | Wild-type | 0.11 | Wild-type |
T15 | 0 | Wild-type | 0.08 | Wild-type | 0.26 | Wild-type | 0.11 | Wild-type |
T16 | 0.11 | Wild-type | 0.27 | Wild-type | 0 | Wild-type | 0.12 | Wild-type |
T17 | 0 | Wild-type | 0.2 | Wild-type | 0.2 | Wild-type | 0.13 | Wild-type |
T18 | 0.02 | Wild-type | 0.15 | Wild-type | 0.27 | Wild-type | 0.15 | Wild-type |
T19 | 0.21 | Wild-type | 0.12 | Wild-type | 0.17 | Wild-type | 0.16 | Wild-type |
T20 | 0 | Wild-type | 0.13 | Wild-type | 0.36 | Wild-type | 0.16 | Wild-type |
T21 | 0.11 | Wild-type | 0.11 | Wild-type | 0.25 | Wild-type | 0.16 | Wild-type |
T22 | 0.09 | Wild-type | 0 | Wild-type | 0.4 | Wild-type | 0.16 | Wild-type |
T23 | 0 | Wild-type | 0.16 | Wild-type | 0.36 | Wild-type | 0.17 | Wild-type |
T24 | 0.07 | Wild-type | 0.11 | Wild-type | 0.33 | Wild-type | 0.17 | Wild-type |
T25 | 0 | Wild-type | 0.28 | Wild-type | 0.3 | Wild-type | 0.19 | Wild-type |
T26 | 0 | Wild-type | 0.46 | Wild-type | 0.12 | Wild-type | 0.19 | Wild-type |
T27 | 0.19 | Wild-type | 0.23 | Wild-type | 0.24 | Wild-type | 0.22 | Wild-type |
T28 | 0 | Wild-type | 0.48 | Wild-type | 0.26 | Wild-type | 0.25 | Wild-type |
T29 | 0.3 | Wild-type | 0.16 | Wild-type | 0.31 | Wild-type | 0.26 | Wild-type |
T30 | 0.28 | Wild-type | 0.19 | Wild-type | 0.41 | Wild-type | 0.29 | Wild-type |
T31 | 0.26 | Wild-type | 0.09 | Wild-type | 0.54 | Wild-type | 0.3 | Wild-type |
T32 | 0.06 | Wild-type | 0.53 | Wild-type | 0.3 | Wild-type | 0.3 | Wild-type |
T33 | 0 | Wild-type | 0.49 | Wild-type | 0.45 | Wild-type | 0.31 | Wild-type |
T34 | 0.34 | Wild-type | 0.23 | Wild-type | 0.39 | Wild-type | 0.32 | Wild-type |
T35 | 0.06 | Wild-type | 0.44 | Wild-type | 0.5 | Wild-type | 0.33 | Wild-type |
T36 | 0.07 | Wild-type | 0.12 | Wild-type | 0.79 | Wild-type | 0.33 | Wild-type |
T37 | 0.14 | Wild-type | 0.37 | Wild-type | 0.47 | Wild-type | 0.33 | Wild-type |
T38 | 0.04 | Wild-type | 0.55 | Wild-type | 0.58 | Wild-type | 0.39 | Wild-type |
T39 | 0 | Wild-type | 0.75 | Wild-type | 0.51 | Wild-type | 0.42 | Wild-type |
T40 | 0.27 | Wild-type | 0.4 | Wild-type | 0.76 | Wild-type | 0.48 | Wild-type |
T41 | 0 | Wild-type | 0.73 | Wild-type | 0.71 | Wild-type | 0.48 | Wild-type |
T42 | 0.22 | Wild-type | 0 | Wild-type | 1.4 | Wild-type | 0.54 | Wild-type |
T43 | 0.21 | Wild-type | 0.6 | Wild-type | 0.85 | Wild-type | 0.55 | Wild-type |
T44 | 0.7 | Wild-type | 1.08 | Wild-type | 0.69 | Wild-type | 0.82 | Wild-type |
T45 | 2.65 | Wild-type | 0 | Wild-type | 0 | Wild-type | 0.88 | Wild-type |
T46 | 0.97 | Wild-type | 0.8 | Wild-type | 0.97 | Wild-type | 0.91 | Wild-type |
T47 | 0.52 | Wild-type | 1.38 | Wild-type | 1.23 | Wild-type | 1.04 | Wild-type |
T48 | 3.69 | Wild-type | 1 | Wild-type | 0.66 | Wild-type | 1.78 | Wild-type |
T49 | 5.76 | Wild-type | 0.49 | Wild-type | 0.16 | Wild-type | 2.14 | Wild-type |
T50 | 5.79 | Wild-type | 1.04 | Wild-type | 0.42 | Wild-type | 2.42 | Wild-type |
T51 | 7.42 | Wild-type | 1.56 | Wild-type | 3.01 | Wild-type | 4 | Wild-type |
* T52 | 2.17 | Wild-type | 5.62 | Wild-type | 8.65 | Mutant | 5.48 | Wild-type |
* T53 | 3.61 | Wild-type | 9.11 | Mutant | 9.87 | Mutant | 7.53 | Wild-type |
* T54 | 5.48 | Wild-type | 7.74 | Wild-type | 10.49 | Mutant | 7.9 | Mutant |
T55 | 13.94 | Mutant | 15.08 | Mutant | 13.29 | Mutant | 14.1 | Mutant |
* T56 | 0.75 | Wild-type | 22.36 | Mutant | 22.88 | Mutant | 15.33 | Mutant |
T57 | 10.48 | Mutant | 17.56 | Mutant | 18.47 | Mutant | 15.51 | Mutant |
* T58 | 4.71 | Wild-type | 22.75 | Mutant | 21.34 | Mutant | 16.27 | Mutant |
T59 | 13.39 | Mutant | 20.33 | Mutant | 20.88 | Mutant | 18.2 | Mutant |
T60 | 16.62 | Mutant | 18.76 | Mutant | 21.23 | Mutant | 18.87 | Mutant |
T61 | 16.58 | Mutant | 17.12 | Mutant | 24.37 | Mutant | 19.36 | Mutant |
T62 | 15.04 | Mutant | 21.44 | Mutant | 22.65 | Mutant | 19.71 | Mutant |
T63 | 10.82 | Mutant | 24.39 | Mutant | 28.47 | Mutant | 21.23 | Mutant |
T64 | 9.23 | Mutant | 26.74 | Mutant | 28 | Mutant | 21.32 | Mutant |
* T65 | 2.04 | Wild-type | 29.01 | Mutant | 38.62 | Mutant | 23.22 | Mutant |
T66 | 15.63 | Mutant | 27.81 | Mutant | 29.46 | Mutant | 24.3 | Mutant |
T67 | 27.78 | Mutant | 23.06 | Mutant | 23.44 | Mutant | 24.76 | Mutant |
T68 | 24.88 | Mutant | 30.54 | Mutant | 31.24 | Mutant | 28.89 | Mutant |
T69 | 25 | Mutant | 32.61 | Mutant | 31.67 | Mutant | 29.76 | Mutant |
T70 | 9.47 | Mutant | 46.99 | Mutant | 50.34 | Mutant | 35.6 | Mutant |
T71 | 34.96 | Mutant | 34.48 | Mutant | 38.13 | Mutant | 35.85 | Mutant |
T72 | 20.1 | Mutant | 42.43 | Mutant | 45.5 | Mutant | 36.01 | Mutant |
T73 | 38.23 | Mutant | 32.7 | Mutant | 38.13 | Mutant | 36.36 | Mutant |
T74 | 36.08 | Mutant | 40.95 | Mutant | 43.71 | Mutant | 40.25 | Mutant |
* T75 | 4.29 | Wild-type | 55.56 | Mutant | 60.95 | Mutant | 40.27 | Mutant |
T76 | 30.18 | Mutant | 50.53 | Mutant | 49.34 | Mutant | 43.35 | Mutant |
T77 | 41.87 | Mutant | 42.24 | Mutant | 46.7 | Mutant | 43.6 | Mutant |
T78 | 41.14 | Mutant | 44.78 | Mutant | 48.95 | Mutant | 44.96 | Mutant |
T79 | 60.77 | Mutant | 45.28 | Mutant | 49.33 | Mutant | 51.79 | Mutant |
T80 | 53.88 | Mutant | 60.45 | Mutant | 58.23 | Mutant | 57.52 | Mutant |
T81 | 83.77 | Mutant | 78.03 | Mutant | 81.71 | Mutant | 81.17 | Mutant |
First ddPCR | Second ddPCR | Third ddPCR | Mean ddPCR | |
---|---|---|---|---|
Sensitivity | 71.88% | 84.38% | 84.38% | 84.38% |
Specificity | 100% | 97.96% | 93.88% | 97.96% |
PPV | 100% | 96.43% | 90.00% | 96.43% |
NPV | 84.48% | 90.57% | 90.20% | 90.57% |
Sample ID | KRAS ddPCR | KRAS ddPCR | KRAS Sanger | KRAS PNA |
---|---|---|---|---|
MAF | Cutoff Result | Sequencing | Clamping Assay | |
T1 | 0.00 | Wild-type | Wild-type | Wild-type |
T2 | 0.02 | Wild-type | Wild-type | Wild-type |
T3 | 0.02 | Wild-type | Wild-type | Wild-type |
T4 | 0.02 | Wild-type | Wild-type | Wild-type |
T5 | 0.03 | Wild-type | Wild-type | Wild-type |
T6 | 0.04 | Wild-type | Wild-type | Wild-type |
T7 | 0.05 | Wild-type | Wild-type | Wild-type |
T8 | 0.06 | Wild-type | Wild-type | Wild-type |
T9 | 0.07 | Wild-type | Wild-type | Wild-type |
T10 | 0.08 | Wild-type | Wild-type | Wild-type |
T11 | 0.09 | Wild-type | Wild-type | Wild-type |
T12 | 0.09 | Wild-type | Wild-type | Wild-type |
T13 | 0.09 | Wild-type | Wild-type | Wild-type |
T14 | 0.11 | Wild-type | Wild-type | Wild-type |
* T15 | 0.11 | Wild-type | Wild-type | * Mutant |
T16 | 0.12 | Wild-type | Wild-type | Wild-type |
T17 | 0.13 | Wild-type | Wild-type | Wild-type |
T18 | 0.15 | Wild-type | Wild-type | Wild-type |
T19 | 0.16 | Wild-type | Wild-type | Wild-type |
T20 | 0.16 | Wild-type | Wild-type | Wild-type |
T21 | 0.16 | Wild-type | Wild-type | Wild-type |
T22 | 0.16 | Wild-type | Wild-type | Wild-type |
* T23 | 0.17 | Wild-type | * Mutant | Wild-type |
T24 | 0.17 | Wild-type | Wild-type | Wild-type |
T25 | 0.19 | Wild-type | Wild-type | Wild-type |
T26 | 0.19 | Wild-type | Wild-type | Wild-type |
T27 | 0.22 | Wild-type | Wild-type | Wild-type |
T28 | 0.25 | Wild-type | Wild-type | Wild-type |
* T29 | 0.26 | Wild-type | * Mutant | Wild-type |
T30 | 0.29 | Wild-type | Wild-type | Wild-type |
T31 | 0.3 | Wild-type | Wild-type | Wild-type |
T32 | 0.3 | Wild-type | Wild-type | Wild-type |
T33 | 0.31 | Wild-type | Wild-type | Wild-type |
T34 | 0.32 | Wild-type | Wild-type | Wild-type |
T35 | 0.33 | Wild-type | Wild-type | Wild-type |
T36 | 0.33 | Wild-type | Wild-type | Wild-type |
T37 | 0.33 | Wild-type | Wild-type | Wild-type |
* T38 | 0.39 | Wild-type | * Mutant | Wild-type |
T39 | 0.42 | Wild-type | Wild-type | Wild-type |
T40 | 0.48 | Wild-type | Wild-type | Wild-type |
T41 | 0.48 | Wild-type | Wild-type | Wild-type |
* T42 | 0.54 | Wild-type | * Mutant | Wild-type |
T43 | 0.55 | Wild-type | Wild-type | Wild-type |
T44 | 0.82 | Wild-type | Wild-type | Wild-type |
T45 | 0.88 | Wild-type | Wild-type | Wild-type |
T46 | 0.91 | Wild-type | Wild-type | Wild-type |
* T47 | 1.04 | Wild-type | Wild-type | * Mutant |
* T48 | 1.78 | Wild-type | * Mutant | Wild-type |
* T49 | 2.14 | Wild-type | Wild-type | * Mutant |
* T50 | 2.42 | Wild-type | Wild-type | * Mutant |
* T51 | 4.00 | Wild-type | Wild-type | * Mutant |
* T52 | 5.48 | Wild-type | Wild-type | * Mutant |
* T53 | 7.53 | Wild-type | Wild-type | * Mutant |
* T54 | 7.90 | Mutant | * Wild-type | Mutant |
T55 | 14.1 | Mutant | Mutant | Mutant |
T56 | 15.33 | Mutant | Mutant | Mutant |
T57 | 15.51 | Mutant | Mutant | Mutant |
T58 | 16.27 | Mutant | Mutant | Mutant |
* T59 | 18.20 | Mutant | Mutant | * Wild-type |
T60 | 18.87 | Mutant | Mutant | Mutant |
* T61 | 19.36 | Mutant | Mutant | * Wild-type |
T62 | 19.71 | Mutant | Mutant | Mutant |
T63 | 21.23 | Mutant | Mutant | Mutant |
T64 | 21.32 | Mutant | Mutant | Mutant |
T65 | 23.22 | Mutant | Mutant | Mutant |
T66 | 24.30 | Mutant | Mutant | Mutant |
T67 | 24.76 | Mutant | Mutant | Mutant |
T68 | 28.89 | Mutant | Mutant | Mutant |
T69 | 29.76 | Mutant | Mutant | Mutant |
T70 | 35.60 | Mutant | Mutant | Mutant |
T71 | 35.85 | Mutant | Mutant | Mutant |
T72 | 36.01 | Mutant | Mutant | Mutant |
T73 | 36.36 | Mutant | Mutant | Mutant |
T74 | 40.25 | Mutant | Mutant | Mutant |
T75 | 40.27 | Mutant | Mutant | Mutant |
T76 | 43.35 | Mutant | Mutant | Mutant |
T77 | 43.60 | Mutant | Mutant | Mutant |
T78 | 44.96 | Mutant | Mutant | Mutant |
T79 | 51.79 | Mutant | Mutant | Mutant |
T80 | 57.52 | Mutant | Mutant | Mutant |
T81 | 81.17 | Mutant | Mutant | Mutant |
Detection of KRAG12/13 Mutation | |||
---|---|---|---|
ddPCR | Sanger Sequencing | PNA-Clamping Assay | |
Sensitivity | 100% | 96.43% | 92.86% |
Specificity | 100% | 90.57% | 86.79% |
PPV | 100% | 84.38% | 78.79% |
NPV | 100% | 97.96% | 95.83% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.H.; Lee, T.H.; Choi, M.K.; Kwon, I.S.; Bae, G.E.; Yeo, M.-K. Identification of a Clinical Cutoff Value for Multiplex KRASG12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay. J. Clin. Med. 2020, 9, 2283. https://doi.org/10.3390/jcm9072283
Lee KH, Lee TH, Choi MK, Kwon IS, Bae GE, Yeo M-K. Identification of a Clinical Cutoff Value for Multiplex KRASG12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay. Journal of Clinical Medicine. 2020; 9(7):2283. https://doi.org/10.3390/jcm9072283
Chicago/Turabian StyleLee, Kyung Ha, Tae Hee Lee, Min Kyung Choi, In Sun Kwon, Go Eun Bae, and Min-Kyung Yeo. 2020. "Identification of a Clinical Cutoff Value for Multiplex KRASG12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay" Journal of Clinical Medicine 9, no. 7: 2283. https://doi.org/10.3390/jcm9072283
APA StyleLee, K. H., Lee, T. H., Choi, M. K., Kwon, I. S., Bae, G. E., & Yeo, M.-K. (2020). Identification of a Clinical Cutoff Value for Multiplex KRASG12/G13 Mutation Detection in Colorectal Adenocarcinoma Patients Using Digital Droplet PCR, and Comparison with Sanger Sequencing and PNA Clamping Assay. Journal of Clinical Medicine, 9(7), 2283. https://doi.org/10.3390/jcm9072283