Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects
Abstract
1. Introduction
2. Methods
2.1. Study Population and Recruitment
2.2. MCI Diagnostic Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADL | Activities of Daily Living; |
AD | Alzheimer’s disease; |
aMCI | amnestic mild cognitive impairment; |
aMCI-md | amnestic mild cognitive impairment, multi-domain; |
aMCI-sd | amnestic mild cognitive impairment, single-domain; |
FCSRT | Free and Cued Selective Reminding Test; |
FCSRT ITR | Free and Cued Selective Reminding Test, Immediate Total Recall; |
FCSRT ISC | Free and Cued Selective Reminding Test, Index of Sensitivity of Cueing; |
HbA1c | glycated hemoglobin levels; |
IADL | Instrumental Activities of Daily Living; |
MCI | Mild Cognitive Impairment; |
MMSE | Mini-Mental State Examination; |
naMCI | non-amnestic mild cognitive impairment; |
naMCI-md | non-amnestic mild cognitive impairment, multi-domain; |
naMCI-sd | non-amnestic mild cognitive impairment, single-domain; |
ND-MCI | MCI subjects without diabetes; |
T2D | type 2 diabetes; |
T2D-MCI | MCI subjects with type 2 diabetes. |
References
- Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes-systematic overview of prospective observational studies. Diabetologia 2005, 48, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Tang, M.X.; Stern, Y.; Shea, S.; Mayeux, R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol. 2001, 154, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Ciudin, A.; Espinosa, A.; Simó-Servat, O.; Ruiz, A.; Alegret, M.; Hernández, C.; Boada, M.; Simó, R. Type 2 diabetes is an independent risk factor for dementia conversion in patients with mild cognitive impairment. J. Diabetes Complicat. 2017, 31, 1272–1274. [Google Scholar] [CrossRef]
- Li, J.; Cesari, M.; Liu, F.; Dong, B.; Vellas, B. Effects of Diabetes Mellitus on Cognitive Decline in Patients with Alzheimer Disease: A Systematic Review. Can. J. Diabetes 2017, 41, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rivas, N.; Méndez-Bailón, M.; Miguel-Yanes, J.M.; Hernández-Barrera, V.; Miguel-Díez, J.; Jimenez-Garcia, R.; López-de-Andrés, A. Observational study of vascular dementia in the Spanish elderly population according to Type 2 diabetes status: Trends in incidence, characteristics and oucomes (2004–2013). BMJ Open 2017, 7, e016390. [Google Scholar] [CrossRef]
- Peila, R.; Rodriguez, B.L.; Launer, L.J. Type 2 diabetes, APOE gene and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002, 51, 1256–1262. [Google Scholar] [CrossRef]
- Zhao, W.Q.; De Felice, F.G.; Fernandez, S.; Chen, H.; Lambert, M.P.; Quon, M.J.; Krafft, G.A.; Klein, W.L. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 2008, 22, 246–260. [Google Scholar] [CrossRef]
- Arab, L.; Sadeghi, R.; Walker, D.G.; Lue, L.F.; Sabbagh, M.N. Consequences of aberrant insulin regulation in the brain: Can treating diabetes be effective for Alzheimer’s disease. Curr. Neuropharmacol. 2011, 9, 693–705. [Google Scholar] [CrossRef]
- Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Christianson, T.J.; Pankratz, V.S.; Boeve, B.F.; Vella, A.; Rocca, W.A.; Petersen, R.C. Association of duration and severity of diabetes mellitus with mild cognitive impairment. Arch. Neurol. 2008, 65, 1066–1073. [Google Scholar] [CrossRef]
- Luchsinger, J.A.; Reitz, C.; Patel, B.; Tang, M.X.; Manly, J.J.; Mayeux, R. Relation of diabetes to mild cognitive impairment. Arch. Neurol. 2007, 64, 570–575. [Google Scholar] [CrossRef]
- Velayudhan, L.; Poppe, M.; Archer, N.; Proitsi, P.; Brown, R.G.; Lovestone, S. Risk of developing dementia in people with diabetes and mild cognitive impairment. Br. J. Psychiatry 2010, 196, 36–40. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild Cognitive Impairment as a diagnostic entity. J. Int. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Yuan, X.I.; Wang, X.G. Mild Cognitive impairment in type 2 diabetes mellitus and related risk factors: A review. Rev. Neurosci. 2017, 28, 715–723. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Y.; Miao, R.; Zhao, J.; Zhang, W.; Huang, G.; Ma, F. The characteristic of cognitive function in Type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2015, 109, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Wu, T.; Miao, R.; Xiao, Y.Y.; Zhang, W.; Huang, G. Conversion of mild cognitive impairment to dementia among subjects with diabetes: A population-based study of incidence and risk factors with five years of follow-up. J. Alzheimers Dis. 2015, 43, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Knopman, D.S.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; Baertlein, L.; Boeve, B.F.; Tangalos, E.G.; Ivnik, J.; Mielke, M.M.; et al. Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 2014, 10, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.E.; Fischer, A.L.; Dixon, R.A. Exploring Effects of Type 2 Diabetes on Cognitive Functioning in Older Adults. Neuropsychology 2009, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A pratical method for granding the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2018, 41 (Suppl. S1), 513–527. [Google Scholar]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Caffò, A.O.; De Caro, M.F.; Picucci, L.; Notarnicola, A.; Settanni, A.; Livrea, P.; Lancioni, G.E.; Bosco, A. Reorientation deficits are associated with amnestic mild cognitive impairment. Am. J. Alzheimers Dis. Dement. 2012, 27, 321–330. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Standardizzazione e Taratura Italiana di Test Neuropsicologici; Masson Italia Periodici: Milan, Italy, 1987; pp. 47–50. [Google Scholar]
- Amodio, P.; Wenin, H.; Del Piccolo, F.; Mapelli, D.; Montagnese, S.; Pellegrini, A.; Musto, C.; Gatta, A.; Umiltà, C. Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age-dependent decline and sociobiological variables. Aging Clin. Exp. Res. 2002, 14, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Una versione abbreviata del test di Stroop: Dati normativi nella popolazione italiana. Nuova Riv. Neurol. 2002, 12, 111–115. [Google Scholar]
- Laiacona, M.; Inzaghi, M.G.; De Tanti, A.; Capitani, E. Wisconsin card sorting test: A new global score, with Italian norms, and its relationship with the Weigl sorting test. Neurol. Sci. 2000, 21, 279–291. [Google Scholar] [CrossRef]
- Gainotti, G.; Marra, C.; Villa, G. A double dissociation between accuracy and time of execution on attentional tasks in Alzheimer’s disease and multi-infarct dementia. Brain 2001, 124, 731–738. [Google Scholar] [CrossRef]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The Frontal Assesment Battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef]
- Costa, A.; Bagoj, E.; Monaco, M.; Zabberoni, S.; De Rosa, S.; Papantonio, A.M.; Mundi, C.; Caltagirone, C.; Carlesimo, G.A. Standardization and normative data obtained the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol. Sci. 2014, 35, 365–372. [Google Scholar] [CrossRef]
- Monaco, M.; Costa, A.; Caltagirone, C.; Carlesimo, G.A. Forward and backward span for verbal and visuo-spatial data: Standardization and normative data from an Italian adult population. Neurol. Sci. 2013, 34, 749–754. [Google Scholar] [CrossRef]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G. The Mental Deterioration Battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur. Neurol. 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M. Tre test clinici di memoria verbale a lungo termine. Taratura su soggetti normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 278–296. [Google Scholar]
- Frasson, P.; Ghiretti, R.; Catricalà, E.; Pomati, S.; Marcone, A.; Parisi, L.; Rossini, P.M.; Cappa, S.F.; Mariani, C.; Vanacore, N.; et al. Free and Cued Selective Reminding Test: An Italian normative study. Neurol. Sci. 2011, 32, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.; Pesallaccia, M.; Fabi, K.; Muti, M.; Viticchi, G.; Provinciali, L.; Piccirilli, M. Non-verbal memory measured by Rey-Osterrieth Complex Figure B: Normative data. Neurol. Sci. 2011, 32, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Capasso, R.; Miceli, G. Esame Neuropsicologico per l’Afasia, 1st ed.; Springer: Milan, Italy, 2001. [Google Scholar]
- Catricalà, E.; Della Rosa, P.A.; Ginex, V.; Mussetti, Z.; Plebani, V.; Cappa, S.F. An Italian battery for the assessment of semantic memory disorders. Neurol. Sci. 2013, 34, 985–993. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Han, S.; Liu, Q.; Zhou, J. Type 2 Diabetes Mellitus Is Associated with the Risk of Cognitive Impairment: A Meta-Analysis. J. Mol. Neurosci. 2019, 68, 251–260. [Google Scholar] [CrossRef]
- Bruce, D.G.; Davis, W.A.; Casey, G.P.; Starkstein, S.E.; Clarnette, R.M.; Almeida, O.P.; Davis, T.M. Predictors of cognitive decline in older individuals with diabetes. Diabetes Care 2008, 31, 2103–2107. [Google Scholar] [CrossRef]
- Winkler, A.; Dlugaj, M.; Weimar, C.; Jöckel, K.H.; Erbel, R.; Dragano, N.; Moebus, S. Association of diabetes mellitus and mild cognitive impairment in middle-aged men and women. J. Alzheimers Dis. 2014, 42, 1269–1277. [Google Scholar] [CrossRef]
- Schmidtke, K.; Hermeneit, S. High rate of conversion to Alzheimer’s disease in a cohort of amnestic MCI patients. Int. Psychogeriatr. 2008, 20, 96–108. [Google Scholar] [CrossRef]
- Reinvang, I.; Grambaite, R.; Espeseth, T. Executive Dysfunction in MCI: Subtype or Early Symptom. Int. J. Alzheimer’s Dis. 2012, 2012, 936272. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Chasles, M.J.; Tremblay, A.; Escudier, F.; Lajeunesse, A.; Benoit, S.; Langlois, R.; Joubert, S.; Rouleau, I. An examination of semantic impairment in Amnestic MCI and AD: What can we learn from verbal fluency? Arch. Clin. Neuropsychol. 2019, 35, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Zhu, C.W.; Grossman, H.; Schimming, C. Longitudinal Cognitive Profiles in Diabetes: Results From the National Alzheimer’s Coordinating Center’s Uniform Data. J. Am. Geriatr. Soc. 2017, 65, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, M.; Jia, Y.; Hughes, T.F.; Snitz, B.E.; Chang, C.H.; Berman, S.B.; Sullivan, K.J.; Kamboh, M.I. Mild Cognitive Impairment That Does Not Progress To Dementia: A Population-Based Study. J. Am. Geriatr. Soc. 2019, 67, 232–238. [Google Scholar] [CrossRef]
- Dos Santos Matioli1, M.N.P.; Suemoto, C.K.; Rodriguez, R.D.; Farias, D.S.; da Silva, M.M.; Leite, R.E.P.; Ferretti-Rebustini, R.E.L.; Pasqualucci, C.A.; Filho, W.J.; Grinberg, L.T.; et al. Association between diabetes and causes of dementia: Evidence from a clinicopathological study. Dement Neuropsychol. 2017, 11, 406–412. [Google Scholar] [CrossRef]
- Klein, J.P.; Waxman, S.G. The brain in diabetes: Molecular changes in neurons and their implications for end-organ damage. Lancet Neurol. 2003, 2, 548–554. [Google Scholar] [CrossRef]
- Ott, A.; Stolk, R.P.; van Harskamp, F.; Pols, H.A.; Hofman, A.; Breteler, M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999, 53, 1937–1942. [Google Scholar] [CrossRef]
- De la Monte, S.M.; Wands, J.R. Alzheimer’s disease is type 3 diabetes-Evidence reviewed. J. Diabetes Sci. Technol. 2008, 2, 1101–1113. [Google Scholar] [CrossRef]
- Devaskar, S.U.; Giddings, S.J.; Rajakumar, P.A.; Carnaghi, L.R.; Menon, R.K.; Zahm, D.S. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 1994, 269, 8445–8454. [Google Scholar]
- Craft, S.; Watson, G.S. Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurol. 2004, 3, 169–178. [Google Scholar] [CrossRef]
- De Santi, S.; de Leon, M.J.; Rusinek, H.; Convit, A.; Tarshish, C.Y.; Roche, A.; Tsui, W.H.; Kandil, E.; Boppana, M.; Daisley, K.; et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 2001, 22, 529–539. [Google Scholar] [CrossRef]
- Ferreira, L.S.S.; Fernandes, C.S.; Vieira, M.N.N.; De Felice, F.G. Insulin Resistance in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 830. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
Attention and executive functions | Attention Matrices Test [24] |
Trail Making Test A, TMT-A, and Trail Making Test, TMT-B [25] | |
Stroop Test [26] | |
Weigl’s Sorting Test [27] | |
Multiple Features Target Cancellation Test (MFTC): time; accuracy; error [28] | |
Frontal Assessment Battery (FAB) [29] | |
Phonemic Fluency (FAS) [30] | |
Memory | Digit span [31] |
Rey Auditory Verbal Learning Test: immediate and delayed recall [32] | |
Prose Memory Test [33] | |
Free and Cued Selective Reminding Test (FCSRT): Immediate Free Recall (IFR); Immediate Total Recall (ITR); Delayed Free Recall (DFR); Delayed Total Recall (DTR); Index of Sensitivity Cueing (ISC) [34] | |
Rey–Osterrieth Complex Figure B: immediate and delayed recall [35] | |
Language | Animal fluency [36] |
Fluency for semantic categories [37] | |
Oral comprehension [36] | |
Verbal Naming [36] | |
Noun Naming (CAGI) [37] | |
Visual constructional ability | Rey–Osterrieth Complex Figure B copy [35] |
T2D-MCI n = 39 | ND–MCI n = 37 | p | |
---|---|---|---|
Age *, mean (sd) | 74.21 (4.58) | 76.68 (6.30) | 0.06 |
Female, n (%) | 18 (46.15) | 22 (59.46) | 0.25 |
Education (years) *, mean (sd) | 7.44 (2.98) | 8.27 (3.90) | 0.30 |
MMSE ^, median (iqr) | 26.30 (2.40) | 25.70 (2.00) | 0.10 |
HbA1c *, mean (sd) | 7.62 (1.67) | 5.30 (0.80) | 0.01 |
BMI *, mean (sd) | 28.33 (5.23) | 23.63 (2.50) | 0.00 |
Hypertension, n (%) | 26 (66.67) | 18 (48.65) | 0.11 |
Neuropathy, n (%) | 6 (15.38) | 0 (0.00) | 0.01 |
Nephropathy, n (%) | 3 (7.69) | 0 (0.00) | 0.09 |
Chronic Renal Failure, n (%) | 2 (5.13) | 1 (2.70) | 0.59 |
Retinopathy, n (%) | 13 (33.33) | 0 (0.00) | 0.00 |
Supra-aortic Trunks Arterial Disease, n (%) | 2 (5.13) | 1 (2.70) | 0.59 |
Obliterative Arteriopathy of Lower Limbs, n (%) | 5 (12.82) | 2 (5.41) | 0.26 |
Myocardial Ischemia, n (%) | 9 (23.08) | 14 (37.84) | 0.16 |
T2D-MCI | ND-MCI | p | |||
---|---|---|---|---|---|
Mean/Median | SD/IQR | Mean/Median | SD/IQR | ||
FCSRT ITR (immediate total recall) * | 35.25 | 1.31 | 34.38 | 2.25 | 0.04 |
FCSRT DTR (Delayed Total Recall) * | 11.60 | 0.75 | 11.03 | 1.58 | 0.05 |
FCSRT ISC (Index of Sensitivity of Cueing) * | 0.95 | 0.06 | 0.91 | 0.11 | 0.03 |
Rey Auditory Verbal Learning Test (delayed recall) ^ | 6.90 | 3.70 | 5.30 | 4.70 | 0.02 |
Prose Memory Test ^ | 12.50 | 7.50 | 10.00 | 4.50 | 0.01 |
Rey–Osterrieth Complex Figure B (delayed recall) ^ | 16.51 | 5.59 | 13.98 | 5.27 | 0.05 |
Fluency for semantic categories ^ | 40.30 | 9.19 | 36.30 | 8.42 | 0.01 |
Animal fluency ^ | 16.50 | 6.60 | 14.00 | 4.40 | 0.03 |
Noun Naming (CAGI) * | 45.04 | 2.03 | 44.00 | 1.95 | 0.02 |
Independent Variables: | B ± SE | p |
---|---|---|
FCSRT ITR (immediate total recall) * | 1.09 ± 0.41 | 0.01 |
FCSRT DTR (Delayed Total Recall) * | 0.70 ± 0.26 | 0.01 |
FCSRT ISC (Index of Sensitivity of Cueing) * | 0.06 ± 0.02 | 0.01 |
Prose Memory Test ^ | 3.00 ± 0.63 | 0.00 |
Rey–Osterrieth Complex Figure B (delayed recall) ^ | 5.49 ± 1.32 | 0.00 |
Fluency for semantic categories ^ | 3.99 ± 1.32 | 0.00 |
Animal fluency ^ | 2.75 ± 1.03 | 0.01 |
Noun Naming (CAGI) * | 1.29 ± 0.48 | 0.01 |
HbA1c | Duration of T2D | Insulin Treatment | |
---|---|---|---|
Rey Auditory Verbal Learning Test (immediate recall) * | r = −0.37 p = 0.03 | r = −0.27 p = 0.11 | r = −0.39 p = 0.02 |
Rey Auditory Verbal Learning Test (delayed recall) ^ | r = −0.13 p = 0.47 | r = −0.02 p = 0.89 | r = −0.33 p = 0.06 |
Rey–Osterrieth Complex Figure B (immediate recall) ^ | r = −0.30 p = 0.09 | r = −0.38 p = 0.02 | r = −0.25 p = 0.14 |
Rey–Osterrieth Complex Figure B (copy) ^ | r = −0.28 p = 0.11 | r = −0.45 p = 0.01 | r = −0.33 p = 0.05 |
Attention Matrices Test ^ | r = −0.32 p = 0.58 | r = −0.24 p = 0.16 | r = −0.45 p = 0.01 |
MFTC Test (time index) * | r = 0.21 p = 0.23 | r = 0.21 p = 0.22 | r = 0.37 p = 0.02 |
MFTC Test (accuracy index) * | r = −0.18 p = 0.31 | r = −0.34 p = 0.03 | r = 0.09 p = 0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenza, S.; Paciaroni, L.; Paolini, S.; Bonfigli, A.R.; Di Rosa, M.; Rabini, R.A.; Tortato, E.; Pelliccioni, P.; Pelliccioni, G. Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects. J. Clin. Med. 2020, 9, 2055. https://doi.org/10.3390/jcm9072055
Valenza S, Paciaroni L, Paolini S, Bonfigli AR, Di Rosa M, Rabini RA, Tortato E, Pelliccioni P, Pelliccioni G. Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects. Journal of Clinical Medicine. 2020; 9(7):2055. https://doi.org/10.3390/jcm9072055
Chicago/Turabian StyleValenza, Silvia, Lucia Paciaroni, Susy Paolini, Anna Rita Bonfigli, Mirko Di Rosa, Rosa Anna Rabini, Elena Tortato, Paolo Pelliccioni, and Giuseppe Pelliccioni. 2020. "Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects" Journal of Clinical Medicine 9, no. 7: 2055. https://doi.org/10.3390/jcm9072055
APA StyleValenza, S., Paciaroni, L., Paolini, S., Bonfigli, A. R., Di Rosa, M., Rabini, R. A., Tortato, E., Pelliccioni, P., & Pelliccioni, G. (2020). Mild Cognitive Impairment Subtypes and Type 2 Diabetes in Elderly Subjects. Journal of Clinical Medicine, 9(7), 2055. https://doi.org/10.3390/jcm9072055