The Accuracy of Jaws Repositioning in Bimaxillary Orthognathic Surgery with Traditional Surgical Planning Compared to Digital Surgical Planning in Skeletal Class III Patients: A Retrospective Observational Study
Abstract
:1. Introduction
2. Experimental Section
- skeletal class III (with ANB ≤ 0 and/or Wits appraisal ≤ −2 mm)
- orthodontic–surgical treatment with bimaxillary orthognathic surgery
- availability of complete treatments records (intraoral and extraoral photographs, dental casts, pre/post-cephalometric analysis, 2D presurgical Visual Treatment Objectives (VTO)) of adequate quality
- negative anamnesis for craniofacial congenital anomalies or syndromes
- negative anamnesis for facial traumas
- no previous orthognathic surgery.
- traditional Group T (11 males and 19 females, mean age 22.8 years, SD 4.9)
- digital Group D (12 males and 18 females, mean age 22.5 years, SD 4.8)
2.1. Traditional Surgical Planning
2.2. Digital Surgical Planning
2.3. Evaluation of Surgical Accuracy
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ngan, P.; Moon, W. Evolution of Class III treatment in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 22–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, L.G.; Mulier, D.; Orhan, K.; Shujaat, S.; Shaheen, E.; Willems, G.; Politis, C.; Jacobs, R. Evaluation of long-term hard tissue remodelling after skeletal class III orthognathic surgery: A systematic review. Int. J. Oral Maxillofac. Surg. 2019, 49, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Miloro, M.; Ghali, G.E.; Larsen, P.; Waite, P. (Eds.) Peterson’s Principles of Oral and Maxillofacial Surgery, 2nd ed.; BC Decker Inc.: Hamilton, ON, Canada, 2004; pp. 1051–1204. [Google Scholar]
- Zere, E.; Chaudhari, P.K.; Sharan, J.; Dhingra, K.; Tewari, N. Developing Class III malocclusions: Challenges and solutions. Clin. Cosmet. Investig. Dent. 2018, 10, 99–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, Y.-C.; Pan, C.-Y.; Chou, S.-T.; Liao, C.-Y.; Lai, S.-T.; Chen, C.-M.; Chang, H.-P.; Yang, Y.-H. Treatment of adult Class III malocclusions with orthodontic therapy or orthognathic surgery: Receiver operating characteristic analysis. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 485–493. [Google Scholar] [CrossRef]
- Eslami, S.; Faber, J.; Fateh, A.; Sheikholaemmeh, F.; Grassia, V.; Jamilian, A. Treatment decision in adult patients with class III malocclusion: Surgery versus orthodontics. Prog. Orthod. 2018, 19, 28. [Google Scholar] [CrossRef] [Green Version]
- Khechoyan, D.Y. Orthognathic Surgery: General Considerations. Semin. Plast. Surg. 2013, 27, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Zaroni, F.M.; Cavalcante, R.C.; Da Costa, D.J.; Klüppel, L.; Scariot, R.; Rebellato, N.L.B. Complications associated with orthognathic surgery: A retrospective study of 485 cases. J. Craniomaxillofac. Surg. 2019, 47, 1855–1860. [Google Scholar] [CrossRef]
- Pascal, E.; Majoufre, C.; Bondaz, M.; Courtemanche, A.; Berger, M.; Bouletreau, P. Current status of surgical planning and transfer methods in orthognathic surgery. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 245–248. [Google Scholar] [CrossRef]
- Hammoudeh, J.A.; Howell, L.K.; Boutros, S.; Scott, M.A.; Urata, M.M. Current Status of Surgical Planning for Orthognathic Surgery: Traditional Methods versus 3D Surgical Planning. Plast. Reconstr. Surg. Glob. Open 2015, 3, 3. [Google Scholar] [CrossRef]
- Stokbro, K.; Aagaard, E.; Torkov, P.; Bell, R.B.; Thygesen, T. Virtual planning in orthognathic surgery. Int. J. Oral Maxillofac. Surg. 2014, 43, 957–965. [Google Scholar] [CrossRef]
- Hupp, J.R.; Iii, E.E.; Tucker, M.R. Contemporary Oral and Maxillofacial Surgery. Stomatol. EDU J. 2019, 6, 277. [Google Scholar] [CrossRef]
- Olszewski, R.; Reychler, H. Les limites de la chirurgie des modèles en chirurgie orthognathique: Implications théoriques et pratiques. Rev. Stomatol. Chir. Maxillofac. 2004, 105, 165–169. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Lin, H.-H.; Lo, L.-J.; Ho, C.-T. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: A comparative study. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, A.; Bruno, G.; Crivellin, G.; Siviero, L.; Zalunardo, F.; Baciliero, U.; Gracco, A. Combined orthodontic and surgical treatment supported by virtual planning in a severe mandibular asymmetry: A case report. Int Orthod. 2020. [Google Scholar] [CrossRef] [PubMed]
- Centenero, S.A.-H.; Hernández-Alfaro, F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results—Our experience in 16 cases. J. Craniomaxillofac. Surg. 2012, 40, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.-J.; Wilde, F.; Neuhaus, M.; Schramm, A.; Gellrich, N.-C.; Rana, M. Accuracy of virtual surgical planning of orthognathic surgery with aid of CAD/CAM fabricated surgical splint—A novel 3D analyzing algorithm. J. Craniomaxillofac. Surg. 2017, 45, 1962–1970. [Google Scholar] [CrossRef] [PubMed]
- Cousley, R.R.J.; Bainbridge, M.; Rossouw, P.E. The accuracy of maxillary positioning using digital model planning and 3D printed wafers in bimaxillary orthognathic surgery. J. Orthod. 2017, 44, 256–267. [Google Scholar] [CrossRef]
- Haas, O.H., Jr.; Becker, O.; De Oliveira, R.B. Computer-aided planning in orthognathic surgery—Systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 329–342. [Google Scholar] [CrossRef]
- Ritto, F.; Schmitt, A.; Pimentel, T.; Canellas, J.V.D.S.; Medeiros, P. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning. Int. J. Oral Maxillofac. Surg. 2018, 47, 160–166. [Google Scholar] [CrossRef]
- Kwon, T.-G.; Choi, J.-W.; Kyung, H.-M.; Park, H.-S. Accuracy of maxillary repositioning in two-jaw surgery with conventional articulator model surgery versus virtual model surgery. Int. J. Oral Maxillofac. Surg. 2014, 43, 732–738. [Google Scholar] [CrossRef]
- Peterman, R.J.; Jiang, S.; Johe, R.; Mukherjee, P.M. Accuracy of Dolphin visual treatment objective (VTO) prediction software on class III patients treated with maxillary advancement and mandibular setback. Prog. Orthod. 2016, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, D.; Kämmerer, P.W.; Hennig, M.; Schön, G.; Thiem, D.G.E.; Bschorer, R. Customized virtual surgical planning in bimaxillary orthognathic surgery: A prospective randomized trial. Clin. Oral Investig. 2018, 23, 3115–3122. [Google Scholar] [CrossRef] [PubMed]
All | Traditional | Digital | |
---|---|---|---|
Total, n | 60 | 30 | 30 |
Males, n | 23 | 11 | 12 |
Females, n | 37 | 19 | 18 |
Mean age, years (SD) | 22.7 (4.8) | 22.8 (4.9) | 22.5 (4.8) |
All: Average (SD) | Traditional: Average (SD) | Digital: Average (SD) | p-Value | |
---|---|---|---|---|
n | 60 | 30 | 30 | |
Wits, mm | −8.9 (4.6) | −9.5 (4.7) | −8.4 (4.5) | 0.32 |
ANB | −2.9 (3.3) | −3.1 (2.8) | −2.6 (3.7) | 0.52 |
Measure | Difference (in Absolute Value) between the Obtained and Planned Result, Average (SD) | Cases with Absolute Difference > 2°, n (%) | Equivalence Test: 90% CI (p-Value) |
---|---|---|---|
ANB, ° | 1.32 (1.26) | 4 (13%) | 0.93 to 1.71 (p = 0.003) |
SNA, ° | 2.30 (2.29) | 7 (23%) | 1.59 to 3.01 (p = 0.72) |
SNB, ° | 2.02 (1.96) | 7 (23%) | 1.41 to 2.63 (p = 0.06) |
Ar-Go-Me, ° | 2.27 (1.87) | 10 (33%) | 1.69 to 2.85 (p = 0.78) |
S-Ar-Go, ° | 1.62 (1.65) | 4 (13%) | 1.11 to 2.24 (p = 0.11) |
Measure | Difference (in Absolute Value) between the Obtained and Planned Result, Average (SD) | Cases with Absolute Difference > 2°, n (%) | Equivalence Test: 90% CI (p-Value) |
---|---|---|---|
ANB, ° | 0.77 (0.62) | 1 (3%) | 0.58 to 0.96 (p < 0.0001) |
SNA, ° | 0.96 (0.77) | 1 (3%) | 0.72 to 1.20 (p < 0.0001) |
SNB, ° | 0.77 (0.71) | 1 (3%) | 0.55 to 0.99 (p < 0.0001) |
Ar-Go-Me, ° | 0.96 (0.91) | 3 (10%) | 0.68 to 1.24 (p < 0.0001) |
S-Ar-Go, ° | 0.54 (0.50) | 0 (0%) | 0.39 to 0.70 (p < 0.0001) |
Measure | Difference (in Absolute Value) between the Obtained and Planned Result, Average (SD) | |||
---|---|---|---|---|
Digital Surgical Planning | Traditional Surgical Planning | Mean Difference (95% CI) | p-Value | |
ANB, ° | 0.77 (0.62) | 1.32 (1.26) | −0.55 (−1.07 to −0.03) | 0.04 |
SNA, ° | 0.96 (0.77) | 2.30 (2.29) | −1.34 (−2.24 to −0.45) | 0.004 |
SNB, ° | 0.77 (0.71) | 2.02 (1.96) | −1.25 (−2.02 to −0.48) | 0.002 |
Ar-Go-Me, ° | 0.96 (0.91) | 2.27 (1.87) | −1.31 (−2.07 to −0.55) | 0.001 |
S-Ar-Go, ° | 0.54 (0.50) | 1.62 (1.65) | −1.08 (−1.72 to −0.44) | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barone, M.; De Stefani, A.; Baciliero, U.; Bruno, G.; Gracco, A. The Accuracy of Jaws Repositioning in Bimaxillary Orthognathic Surgery with Traditional Surgical Planning Compared to Digital Surgical Planning in Skeletal Class III Patients: A Retrospective Observational Study. J. Clin. Med. 2020, 9, 1840. https://doi.org/10.3390/jcm9061840
Barone M, De Stefani A, Baciliero U, Bruno G, Gracco A. The Accuracy of Jaws Repositioning in Bimaxillary Orthognathic Surgery with Traditional Surgical Planning Compared to Digital Surgical Planning in Skeletal Class III Patients: A Retrospective Observational Study. Journal of Clinical Medicine. 2020; 9(6):1840. https://doi.org/10.3390/jcm9061840
Chicago/Turabian StyleBarone, Martina, Alberto De Stefani, Ugo Baciliero, Giovanni Bruno, and Antonio Gracco. 2020. "The Accuracy of Jaws Repositioning in Bimaxillary Orthognathic Surgery with Traditional Surgical Planning Compared to Digital Surgical Planning in Skeletal Class III Patients: A Retrospective Observational Study" Journal of Clinical Medicine 9, no. 6: 1840. https://doi.org/10.3390/jcm9061840