Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Progressive Test Protocol
2.3. Methods
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. The Role of Th1 and Th2 in Post-Effort Response
4.2. The Role of Th17 and Treg in the Post-Effort Response
4.3. The Role of IL-8 in Post-Effort Response
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical Activity, Cognition, and Brain Outcomes. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, H.-A.; Esmaeilzadeh, S. Association between academic achievement and physical status including physical activity, aerobic and muscular fitness tests in adolescent boys. Environ. Health Prev. Med. 2015, 21, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Lukács, A.; Sasvari, P.; Kiss-Tóth, E. Physical activity and physical fitness as protective factors of adolescent health. Int. J. Adolesc. Med. Health 2018. [Google Scholar] [CrossRef]
- Quigley, A.; O’Brien, K.; Parker, R.; MacKay-Lyons, M. Exercise and cognitive function in people living with HIV: A scoping review. Disabil. Rehabil. 2018, 41, 1384–1395. [Google Scholar] [CrossRef]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [CrossRef]
- Sowers, K.L.; Litwin, B.A.; Lee, A.C.W.; Galantino, M.L.A. Exercise Perception and Behaviors in Individuals Living with Primary Immunodeficiency Disease. J. Clin. Immunol. 2018, 38, 174–184. [Google Scholar] [CrossRef]
- Ahlers, J.D.; Belyakov, I.M. Memories that last forever: Strategies for optimizing vaccine T-cell memory. Blood 2010, 115, 1678–1689. [Google Scholar] [CrossRef]
- De Abreu, M.S.; Giacomini, A.C.; Zanandrea, R.; Dos Santos, B.E.; Genario, R.; De Oliveira, G.G.; Friend, A.J.; Amstislavskaya, T.G.; Kalueff, A.V. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018, 92, 1–12. [Google Scholar] [CrossRef]
- Naufel, A.O.; Aguiar, M.C.F.; Madeira, F.M.; Abreu, L.G. Treg and Th17 cells in inflammatory periapical disease: A systematic review. Braz. Oral Res. 2017, 31, e103. [Google Scholar] [CrossRef]
- Phadnis-Moghe, A.S.; Kaminski, N.E. Immunotoxicity testing using human primary leukocytes: An adjunct approach for the evaluation of human risk. Curr. Opin. Toxicol. 2017, 3, 25–29. [Google Scholar] [CrossRef]
- Windsor, M.T.; Bailey, T.G.; Perissiou, M.; Meital, L.; Golledge, J.; Russell, F.; Askew, C.D. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness. Front. Physiol. 2018, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Enayati, M.; Solati, J.; Hosseini, M.-H.; Shahi, H.-R.; Saki, G.; Salari, A.-A. Maternal infection during late pregnancy increases anxiety- and depression-like behaviors with increasing age in male offspring. Brain Res. Bull. 2012, 87, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Maslanik, T.; Mahaffey, L.; Tannura, K.; Beninson, L.; Greenwood, B.N.; Fleshner, M. The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav. Immun. 2013, 28, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Keaney, L.C.; Kilding, A.E.; Merien, F.; Dulson, D.K. The impact of sport related stressors on immunity and illness risk in team-sport athletes. J. Sci. Med. Sport 2018, 21, 1192–1199. [Google Scholar] [CrossRef]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Dulson, D.K. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 2018, 104, 136–142. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, S.; Davie, A.; Su, Q. Effects of moderate and high intensity exercise on T1/T2 balance. Exerc. Immunol. Rev. 2012, 18, 98–114. [Google Scholar]
- Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014, 74, 5–17. [Google Scholar] [CrossRef]
- Nowak, R.; Kostrzewa-Nowak, D.; Buryta, R. Analysis of Selected Lymphocyte (CD45+) Subset Distribution in Capillary Blood of Young Soccer Players. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Buryta, R.; Nowak, R. Comparison of selected CD45+ cell subsets’ response and cytokine levels on exhaustive effort among soccer players. J. Med. Biochem. 2019, 38, 256–267. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Nowak, R. Analysis of selected T cell subsets in peripheral blood after exhaustive effort among elite soccer players. Biochem. Med. 2018, 28, 030707. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa-Nowak, D.; Nowak, R. T helper cell-related changes in peripheral blood induced by progressive effort among soccer players. PLoS ONE 2020, 15, e0227993. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Wood, M.J.; Stocks, P.; Howatson, G.; Stevenson, E.J.; Hilkens, C.M.U. T-regulatory cells exhibit a biphasic response to prolonged endurance exercise in humans. Eur. J. Appl. Physiol. 2017, 117, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Macha, M.; Shlafer, M.; Kluger, M.J. Human neutrophil hydrogen peroxide generation following physical exercise. J. Sports Med. Phys. Fit. 1990, 30, 412–419. [Google Scholar]
- MacKinnon, L.T.; Hooper, S.L. Plasma glutamine and upper respiratory tract infection during intensified training in swimmers. Med. Sci. Sports Exerc. 1996, 28, 285–290. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Crowley, L.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef]
- Higdon, L.E.; Lee, K.; Tang, Q.; Maltzman, J.S. Virtual Global Transplant Laboratory Standard Operating Procedures for Blood Collection, PBMC Isolation, and Storage. Transplant. Direct 2016, 2, e101. [Google Scholar] [CrossRef]
- Lauruschkat, C.D.; Wurster, S.; Page, L.; Lazariotou, M.; Dragan, M.; Weiß, P.; Ullmann, A.J.; Einsele, H.; Löffler, J. Susceptibility of A. fumigatus-specific T-cell assays to pre-analytic blood storage and PBMC cryopreservation greatly depends on readout platform and analytes. Mycoses 2018, 61, 549–560. [Google Scholar] [CrossRef]
- Kumar, B.V.; Connors, T.; Farber, D.L. Human T Cell Development, Localization, and Function throughout Life. Immunity 2018, 48, 202–213. [Google Scholar] [CrossRef]
- Louati, N.; Rekik, T.; Menif, H.; Gargouri, J. Blood lymphocyte T subsets reference values in blood donors by flow cytometry. Tunis. Med. 2019, 97, 327–334. [Google Scholar]
- Holcar, M.; Goropevšek, A.; Ihan, A.; Avčin, T. Age-Related Differences in Percentages of Regulatory and Effector T Lymphocytes and Their Subsets in Healthy Individuals and Characteristic STAT1/STAT5 Signalling Response in Helper T Lymphocytes. J. Immunol. Res. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wasinski, F.; Gregnani, M.F.; Ornellas, F.H.; Bacurau, A.V.N.; Camara, N.O.S.; Araujo, R.C.; Bacurau, R.F. Lymphocyte Glucose and Glutamine Metabolism as Targets of the Anti-Inflammatory and Immunomodulatory Effects of Exercise. Mediat. Inflamm. 2014, 2014, 326803. [Google Scholar] [CrossRef] [PubMed]
- Neves, P.R.D.S.; Tenório, T.R.D.S.; Lins, T.A.; Muniz, M.T.C.; Pithon-Curi, T.C.; Botero, J.P.; Prado, W.L.D. Acute effects of high- and low-intensity exercise bouts on leukocyte counts. J. Exerc. Sci. Fit. 2015, 13, 24–28. [Google Scholar] [CrossRef]
- Kostrzewa-Nowak, D.; Buryta, R.; Nowak, R. T cell subsets’ distribution in elite karate athletes as a response to physical effort. J. Med. Biochem. 2019, 38, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M. Mucosal immunity and respiratory illness in elite athletes. Int. J. Sports Med. 2000, 21 (Suppl. S1), S33–S43. [Google Scholar] [CrossRef]
- Nieman, D. Current Perspective on Exercise Immunology. Curr. Sports Med. Rep. 2003, 2, 239–242. [Google Scholar] [CrossRef]
- Kakanis, M.W.; Peake, J.; Brenu, E.W.; Simmonds, M.J.; Gray, B.; Marshall-Gradisnik, S.M. T Helper Cell Cytokine Profiles After Endurance Exercise. J. Interferon Cytokine Res. 2014, 34, 699–706. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Naseem, S.; Manzoor, S.; Javed, A.; Abbas, S. Interleukin-6 Rescues Lymphocyte from Apoptosis and Exhaustion Induced by Chronic Hepatitis C Virus Infection. Viral Immunol. 2018, 31, 624–631. [Google Scholar] [CrossRef]
- Nielsen, H.D.G.; Øktedalen, O.; Opstad, P.-K.; Lyberg, T. Plasma Cytokine Profiles in Long-Term Strenuous Exercise. J. Sports Med. 2016, 2016, 7186137. [Google Scholar] [CrossRef]
- Pedersen, B.K. Special feature for the Olympics: effects of exercise on the immune system: exercise and cytokines. Immunol. Cell Biol. 2000, 78, 532–535. [Google Scholar] [CrossRef]
- Śmidowicz, A.; Regula, J. Effect of nutritional status and dietary patterns on human serum C-reactive protein and interleukin-6 concentrations. Adv. Nutr. 2015, 6, 738–747. [Google Scholar] [CrossRef]
- Kasapis, C.; Thompson, P.D. The Effects of Physical Activity on Serum C-Reactive Protein and Inflammatory Markers. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef]
- Moldoveanu, A.I.; Shephard, R.J.; Shek, P.N. Exercise elevates plasma levels but not gene expression of IL-1β, IL-6, and TNF-α in blood mononuclear cells. J. Appl. Physiol. 2000, 89, 1499–1504. [Google Scholar] [CrossRef]
- Smith, J.A.; Telford, R.; Baker, M.S.; Hapel, A.J.; Weidemann, M.J. Cytokine immunoreactivity in plasma does not change after moderate endurance exercise. J. Appl. Physiol. 1992, 73, 1396–1401. [Google Scholar] [CrossRef]
- Ullum, H.; Haahr, P.M.; Diamant, M.; Palmo, J.; Halkjaer-Kristensen, J.; Pedersen, B.K. Bicycle exercise enhances plasma IL-6 but does not change IL-1 alpha, IL-1 beta, IL-6, or TNF-alpha pre-mRNA in BMNC. J. Appl. Physiol. 1994, 77, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Oukka, M.; Kuchroo, V.; Bettelli, E. Th17 cells: Effector T cells with inflammatory properties. Semin. Immunol. 2007, 19, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef]
- McGeachy, M.J.; Cua, D.J. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin. Immunol. 2007, 19, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Yosef, N. Understanding Th17 cells through systematic genomic analyses. Curr. Opin. Immunol. 2014, 28, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar] [PubMed]
- Slobodin, G.; Rimar, D. Regulatory T Cells in Systemic Sclerosis: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2016, 52, 194–201. [Google Scholar] [CrossRef]
- Perry, C.; Pick, M.; Bdolach, N.; Hazan-Halevi, I.; Kay, S.; Berr, I.; Reches, A.; Harishanu, Y.; Grisaru, D. Endurance Exercise Diverts the Balance between Th17 Cells and Regulatory T Cells. PLoS ONE 2013, 8, e74722. [Google Scholar] [CrossRef]
- Beste, M.T.; Pfäffle-Doyle, N.; Prentice, E.A.; Morris, S.N.; Lauffenburger, U.A.; Isaacson, K.B.; Griffith, L.G. Molecular Network Analysis of Endometriosis Reveals a Role for c-Jun-Regulated Macrophage Activation. Sci. Transl. Med. 2014, 6, 222ra16. [Google Scholar] [CrossRef]
- Brat, D.J.; Bellail, A.C.; Van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 2005, 7, 122–133. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Dumke, C.L.; Utter, A.C.; Murphy, E.A.; Pearce, S.; Gojanovich, G.; McAnulty, S.R.; McAnulty, L.S. Blood Leukocyte mRNA Expression for IL-10, IL-1Ra, and IL-8, but Not IL-6, Increases After Exercise. J. Interferon Cytokine Res. 2006, 26, 668–674. [Google Scholar] [CrossRef]
Cytokine | Theoretical Limit of Detection (pg/mL) |
---|---|
IL-2 | 2.6 |
IL-4 | 4.9 |
IL-6 | 2.4 |
IL-8 | 3.6 |
IL-10 | 3.3 |
IL-12p70 | 1.9 |
IL-17A | 18.9 |
TNF-α | 3.7 |
IFN-γ | 3.7 |
Variable | 16 Years Old Group (n = 16) | 17 Years Old Group (n = 16) | 18 Years Old Group (n = 16) | 19 Years Old Group (n = 16) | 20 Years Old Group (n = 16) | pKW 1 |
---|---|---|---|---|---|---|
Height (cm) | 180 (178–182) | 180 (173–184) | 181 (177–184) | 178 (172–181) | 184 (160–188) | 0.820 |
Weight (kg) | 71.0 (64.7–75.5) | 69.6 (64.2–76.1) | 69.8 (67.0–70.0) | 69.2 (63.3–72.3) | 75.4 (56.4–81.5) | 0.839 |
FAT (%) | 9.9 (7.3–12.2) | 7.7 (5.5–11.0) | 10.6 (5.3–10.6) | 8.2 (7.3–9.8) | 9.9 (7.3–12.1) | 0.226 |
FAT MASS (kg) | 7.2 (4.8–8.9) | 5.7 (3.6–8.0) | 7.4 (3.7–7.7) | 6.0 (4.8–6.8) | 7.9 (4.1–9.8) | 0.338 |
FFM (kg) | 63.4 (60.3–67.1) | 64.7 (59.8–68.0) | 62.4 (59.8–66.3) | 63.2 (58.6–65.7) | 67.5 (52.3–71.6) | 0.835 |
TBW (kg) | 46.4 (44.1–49.1) | 47.4 (43.8–49.8) | 45.7 (43.8–48.5) | 46.3 (42.9–48.1) | 49.4 (38.3–52.4) | 0.831 |
Variable | 16 Years Old Group (n = 16) | 17 Years Old Group (n = 16) | 18 Years Old Group (n = 16) | 19 Years Old Group (n = 16) | 20 Years Old Group (n = 16) | pKW |
---|---|---|---|---|---|---|
VO2max (mL/kg/min) | 61.0 (58.7–64.7) | 60.4 (58.–61.59) | 61.9 (57.8–64.6) | 60.7 (56.9–63.2) | 60.2 (57.9–61.1) | 0.721 |
HRmax (beats/min) | 198 (188–201) | 197 (191–203) | 192 (189–201) | 192 (188–200) | 196 (186–200) | 0.762 |
AT (beats/min) | 160 (154–169) | 164 (161–170) | 166 (159–174) | 160 (154–168) | 162 (153–169) | 0.522 |
RQ | 1.06 (1.05–1.08) | 1.06 (1.05–1.08) | 1.07 (1.05–1.08) | 1.04 (0.95–1.06) | 1.07 (1.05–1.10) | 0.050 |
RC | 172 (165–177) | 175 (172–187) | 175 (169–186) | 175 (169–183) | 172 (168–180) | 0.735 |
VE (L/min) | 146.7 (129.5–156.4) | 155.7 (139.2–175.1) | 150.9 (141.0–165.1) | 149.1 (139.8–155.6) | 152.9 (134.7–162.6) | 0.565 |
MVV (L/min) | 190.4 (182.4–197.7) | 189.5 (182.9–202.7) | 188.2 (178.6–194.6) | 187.2 (177.7–195.5) | 192.0 (183.2–204.3) | 0.824 |
MET (mL/kg/min) | 17.3 (16.6–18.4) | 17.8 (17.1–18.8) | 17.7 (17.1–18.9) | 17.2 (16.7–18.6) | 17.3 (16.7–17.9) | 0.433 |
Rf | 58.2 (56.8–65.7) | 66.4 (57.6–68.0) | 60.7 (53.4–68.5) | 59.1 (56.1–65.0) | 56.4 (54.3–60.6) | 0.320 |
Variable | Time Point | 16 Years Old Group (n = 16) | 17 Years Old Group (n = 16) | 18 Years Old Group (n = 16) | 19 Years Old Group (n = 16) | 20 Years Old Group (n = 16) |
---|---|---|---|---|---|---|
WBC (109/L) | pF 1 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
pre-test | 5.8 aa (5.2–6.6) | 5.2 aaa (4.5–5.8) | 5.2 aa (4.6–6.3) | 5.4 aaa (4.8–5.7) | 5.3 aaa (4.7–6.3) | |
post-test | 8.7 bbb (7.4–10.3) | 8.4 bbb (7.0–9.6) | 8.6 bbb (7.0–9.9) | 8.7 bbb (7.2–11.4) | 10.9 bbb (8.9–12.3) | |
recovery | 5.7 (5.2–6.0) | 5.7 (4.6–6.3) | 5.0 (4.4–6.0) | 5.6 (5.2–6.0) | 5.6 (4.6–6.6) | |
LYM (109/L) | pF | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 |
pre-test | 2.4 (2.1–3.0) | 2.0 aaa (1.7–2.2) | 1.9 (1.8–2.2) | 2.2 aaa (2.0–2.2) | 2.1 aaa (1.7–2.2) | |
post-test | 3.8 bb (2.7–4.4) | 4.0 bbb (2.8–4.9) | 3.7 bbb (2.6–4.5) | 4.0 bbb (2.8–4.5) | 4.2 bbb (3.9–4.7) | |
recovery | 2.3 (1.9–2.7) | 1.8 (1.6–2.2) | 1.8 (1.6–2.0) | 2.1 (1.9–2.4) | 1.9 (1.6–2.5) |
Variables Correlated | Pre-Test | Post-Test | Recovery | |||
---|---|---|---|---|---|---|
R | p | R | p | R | p | |
Th1 cells (%) & age | 0.11 | 0.347 | 0.10 | 0.362 | 0.06 | 0.570 |
Th2 cells (%) & age | −0.17 | 0.143 | −0.28 | 0.012 | −0.08 | 0.502 |
Th17 cells (%) & age | 0.04 | 0.753 | 0.11 | 0.312 | −0.05 | 0.668 |
Treg cells (%) & age | −0.01 | 0.933 | −0.24 | 0.030 | 0.04 | 0.711 |
IL-2 (pg/mL) & age | −0.20 | 0.081 | 0.18 | 0.101 | −0.23 | 0.041 |
IL-4 (pg/mL) & age | 0.04 | 0.758 | −0.07 | 0.519 | −0.09 | 0.426 |
IL-6 (pg/mL) & age | −0.04 | 0.751 | −0.23 | 0.036 | −0.24 | 0.035 |
IL-8 (pg/mL) & age | −0.08 | 0.489 | −0.15 | 0.188 | −0.32 | 0.003 |
IL-10 (pg/mL) & age | 0.17 | 0.141 | 0.28 | 0.011 | 0.42 | <0.001 |
IL-12p70 (pg/mL) & age | −0.36 | 0.001 | −0.10 | 0.360 | 0.23 | 0.040 |
IL-17A (pg/mL) & age | 0.00 | 1.000 | 0.29 | 0.010 | −0.28 | 0.012 |
TNF (pg/mL) & age | −0.02 | 0.871 | −0.38 | 0.001 | 0.30 | 0.007 |
IFN (pg/mL) & age | 0.02 | 0.889 | 0.16 | 0.155 | 0.02 | 0.848 |
WBC (109/L) & age | −0.07 | 0.512 | 0.22 | 0.052 | −0.03 | 0.759 |
LYM (109/L) & age | −0.23 | 0.037 | 0.13 | 0.259 | −0.05 | 0.675 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa-Nowak, D.; Nowak, R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. J. Clin. Med. 2020, 9, 1795. https://doi.org/10.3390/jcm9061795
Kostrzewa-Nowak D, Nowak R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. Journal of Clinical Medicine. 2020; 9(6):1795. https://doi.org/10.3390/jcm9061795
Chicago/Turabian StyleKostrzewa-Nowak, Dorota, and Robert Nowak. 2020. "Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort" Journal of Clinical Medicine 9, no. 6: 1795. https://doi.org/10.3390/jcm9061795
APA StyleKostrzewa-Nowak, D., & Nowak, R. (2020). Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. Journal of Clinical Medicine, 9(6), 1795. https://doi.org/10.3390/jcm9061795