Effect of Interval between Human Chorionic Gonadotropin Priming and Ovum Pick-up on the Euploid Probabilities of Blastocyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Controlled Ovarian Stimulation and hCG–OPU Interval
2.3. Insemination or Intracytoplasmic Sperm Injection Procedures and Embryo Culture
2.4. TE Biopsy and Next-Generation Sequencing
2.5. Statistical Analysis
3. Results
3.1. The Study Design and Patient Characteristics
3.2. Effect on Euploidy Probability of Women’s Ages and hCG–OPU Interval
3.3. Effects of the hCG–OPU Interval on Euploidy Rates in Different Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Temporal relationships between ovulation and defined changes in the concentration of plasma estradiol-17 beta, luteinizing hormone, follicle stimulating hormone and progesterone. Am. J. Obstet. Gynecol. 1980, 138, 383–390. [Google Scholar] [CrossRef]
- Testart, J.; Frydman, R. Minimum time lapse between luteinizing hormone surge or human chorionic gonadotropin administration and follicular rupture. Fertil. Steril. 1982, 37, 50–53. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Fleming, R.; Jamieson, M.E.; McQueen, D.; Coutts, J.R.T. Luteinization to oocyte retrieval delay in women in whom multiple follicular growth was induced as part of an in vitro fertilization/gamete intrafallopian transfer program. Fertil. Steril. 1990, 53, 735–737. [Google Scholar] [CrossRef]
- Bokal, E.V.; Vrtovec, H.M.; VirantKlun, I.; Verdenik, I. Prolonged HCG action affects angiogenic substances and improves follicular maturation, oocyte quality and fertilization competence in patients with polycystic ovarian syndrome. Hum. Reprod. 2005, 20, 1562–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raziel, A.; Schachter, M.; Strassburger, D.; Kasterstein, E.; Ron-El, R.; Friedler, S. In vivo maturation of oocytes by extending the interval between human chorionic gonadotropin administration and oocyte retrieval. Fertil. Steril. 2006, 86, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.; Stolwijk, A.M.; Wetzels, A.M. The effect of insemination/injection time on the results of IVF and ICSI. Hum. Reprod. 2001, 16, 1708–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozortsev, D.; Nagy, P.; Abdelmassih, S.; Oliveira, F.; Brasil, A.; Abdelmassih, V.; Diamond, M.; Abdelmassih, R. The optimal time for intracytoplasmic sperm injection in the human is from 37 to 41 hours after administration of human chorionic gonadotropin. Fertil. Steril. 2004, 82, 1492–1496. [Google Scholar] [CrossRef]
- Garor, R.; Shufaro, Y.; Kotler, N.; Shefer, D.; Krasilnikov, N.; Ben-Haroush, A.; Pinkas, H.; Fisch, B.; Sapir, O. Prolonging oocyte in vitro culture and handling time does not compensate for a shorter interval from human chorionic gonadotropin administration to oocyte pickup. Fertil. Steril. 2015, 103, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Son, W.Y.; Chung, J.T.; Chian, R.C.; Herrero, B.; Demirtas, E.; Elizur, S.; Gidoni, Y.; Sylvestre, C.; Dean, N.; Tan, S.L. A 38hinterval between hCG priming and oocyte retrieval increases in vivo and in vitro oocyte maturation rate in programmed IVM cycles. Hum. Reprod. 2008, 23, 2010–2016. [Google Scholar] [CrossRef] [Green Version]
- Schoolcraft, W.B.; Fragouli, E.; Stevens, J.; Munné, S.; Katz-Jaffe, M.G.; Wells, D. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil. Steril. 2010, 94, 1700–1706. [Google Scholar] [CrossRef]
- Chen, H.H.; Huang, C.C.; Cheng, E.H.; Lee, T.H.; Chien, L.F.; Lee, M.S. Optimal timing of blastocyst vitrification after trophectoderm biopsy for preimplantation genetic screening. PLoS ONE 2017, 12, e0185747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, D.K.; Schoolcraft, W.B. In vitro culture of human blastocysts. In Toward Reproductive Certainty: Fertility and Genetics beyond 1999: The Plenary Proceedings of the 11th World Congress on In Vitro Fertilization and Human Reproductive Genetics; Jansen, R., Mortimer, D., Eds.; Parthenon: Pearl River, NY, USA, 1999; pp. 378–388. [Google Scholar]
- Zeger, S.L.; Liang, K.Y.; Albert, P.S. Models for longitudinal data: A generalized estimating equation approach. Biometrics 1988, 44, 1049–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T., Jr. The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014, 101, 656–663. [Google Scholar] [CrossRef]
- Morin, S.J.; Patounakis, G.; Juneau, C.R.; Neal, S.A.; Scott, R.T., Jr.; Seli, E. Diminished ovarian reserve and poor response to stimulation in patients < 38 years old: A quantitative but not qualitative reduction in performance. Hum. Reprod. 2018, 11, 1–10. [Google Scholar]
- Kwee, J.; Elting, M.E.; Schats, R.; McDonnell, J.; Lambalk, C.B. Ovarian volume and antral follicle count for the prediction of low and hyper responders with in vitro fertilization. Reprod. Biol. Endocrinol. 2007, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.T.; Pisarska, M.D.; Bresee, C.; Chen, Y.D.; Lester, J.; Afshar, Y.; Alexander, C.; Karlan, B.Y. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil. Steril. 2014, 102, 1723–1728. [Google Scholar] [CrossRef] [Green Version]
- McCoy, R.C.; Demko, Z.P.; Ryan, A.; Banjevic, M.; Hill, M.; Sigurjonsson, S.; Rabinowitz, M.; Petrov, D.A. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015, 11, e1005601. [Google Scholar] [CrossRef] [Green Version]
- Hassold, T.; Hall, H.; Hunt, P. The origin of human aneuploidy: Where we have been, where we are going. Hum. Mol. Genet. 2007, 16, R203–R208. [Google Scholar] [CrossRef]
- Han, L.; Ge, J.; Zhang, L.; Ma, R.; Hou, X.; Li, B.; Moley, K.; Wang, Q. Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte. Sci. Rep. 2015, 5, 15366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jung, H.; Han, S.H.; Lee, S.; Kwon, J.; Kim, M.G.; Chu, H.; Han, K.; Kwak, H.; Park, S.; et al. An adaptive detection method for fetal chromosomal aneuploidy using cell-free DNA from 447 Korean women. BMC Med. Genomics 2016, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Van de Velde, H.; De Vos, A.; Joris, H.; Nagy, Z.P.; Van Steirteghem, A.C. Effect of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum. Reprod. 1998, 13, 3160–3164. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Sedó, C.; Miguens, M.; Andreucci, S.; Ortiz, N.; Lorenzi, D.; Papier, S.; Nodar, F. Correlation between Cytoplamic Oocyte Maturation and Chromosomal Aneuploidies - Impact on fertilization, embryo quality and pregnancy. JBRA Assist. Reprod. 2015, 19, 59–65. [Google Scholar]
- Van Blerkom, J.; Antczak, M.; Schrader, R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: Association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum. Reprod. 1997, 12, 1047–1055. [Google Scholar] [CrossRef]
- Kuo, T.C.; Endo, K.; Dharmarajan, A.M.; Miyazaki, T.; Atlas, S.J.; Wallach, E.E. Direct effect of angiotensin II on in-vitro perfused rabbit ovary. J. Reprod. Fertil 1991, 92, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Artini, P.G.; Fasciani, A.; Monti, M.; Luisi, S.; D’Ambrogio, G.; Genazzani, A.R. Changes in vascular endothelial growth factor levels and the risk of ovarian excessive stimulation syndrome in women enrolled in an in vitro fertilization program. Fertil. Steril. 1998, 70, 560–564. [Google Scholar] [CrossRef]
- Cordeiro, F.B.; Cataldi, T.R.; de Souza, B.Z.; Rochetti, R.C.; Fraietta, R.; Labate, C.A.; Lo Turco, E.G. Hyper response to ovarian stimulation affects the follicular fluid metabolomic profile of women undergoing IVF similarly to polycystic ovary syndrome. Metabolomics 2018, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Lai, Q.; Xun, Y.; Jin, L. The effect of premature luteinizing hormone increases among high ovarian responders undergoing a gonadotropin-releasing hormone antagonist ovarian stimulation protocol. Int. J. Gynaecol. Obstet. 2018, 142, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Teissier, M.P.; Chable, H.; Paulhac, S.; Aubard, Y. Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: Relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum. Reprod. 2000, 15, 2471–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahraman, S. PGT-A in poor, normo- and hyper-responders. Reprod. Biomed. Online 2019, 38, e9–e10. [Google Scholar] [CrossRef]
- Morin, S.J.; Patounakis, G.; Juneau, C.R.; Neal, S.A.; Scott, R.T., Jr.; Seli, E. Quantity versus quality: Do patients with diminished ovarian reserve (DOR) and poor response to stimulation also exhibit poor blastulation and increased aneuploidy? Fertil. Steril. 2017, 108, e49. [Google Scholar] [CrossRef]
- Capalbo, A.; Rienzi, L.; Cimadomo, D.; Maggiulli, R.; Elliott, T.; Wright, G.; Nagy, Z.P.; Ubaldi, F.M. Correlation between standard blastocyst morphology, euploidy and implantation: An observational study in two centers involving 956 screened blastocysts. Hum. Reprod. 2014, 29, 1173–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdeva, K.; Discutido, R.; Albuz, F.; Almekosh, R.; Peramo, B. Validation of Next-Generation Sequencer for 24-Chromosome Aneuploidy Screening in Human Embryos. Genet. Test Mol. Biomark. 2017, 21, 674–680. [Google Scholar] [CrossRef]
- Gianaroli, L.; Magli, M.C.; Cavallini, G.; Crippa, A.; Nadalini, M.; Bernardini, L.; Menchini Fabris, G.F.; Voliani, S.; Ferraretti, A.P. Frequency of aneuploidy in sperm from patients with extremely severe male factor infertility. Hum. Reprod. 2005, 20, 2140–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magli, M.C.; Gianaroli, L.; Ferraretti, A.P.; Gordts, S.; Fredericks, V.; Crippa, A. Paternal contribution to aneuploidy in preimplantation embryos. Reprod. Biomed. Online 2009, 18, 536–542. [Google Scholar] [CrossRef]
- Mariappen, U.; Keane, K.N.; Hinchliffe, P.M.; Dhaliwal, S.S.; Yovich, J.L. Neither male age nor semen parameters influence clinical pregnancy or live birth outcomes from IVF. Reprod. Biol. 2018, 8, 324–329. [Google Scholar] [CrossRef]
- Templado, C.; Vidal, F.; Estop, A. Aneuploidy in human spermatozoa. Cytogenet. Genome Res. 2011, 133, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.G.; Als-Nielsen, B.; Hornnes, P.J.; Franch Andersen, L. Time interval from human chorionic gonadotrophin (HCG) injection to follicular rupture. Hum. Reprod. 1995, 10, 3202–3205. [Google Scholar] [CrossRef] [PubMed]
- Fleming, R.; Coutts, J.R.T. Induction of multiple follicular development for IVF. Brit. Med. Bul. 1990, 46, 596–615. [Google Scholar] [CrossRef]
- Nargund, G.; Reid, F.; Parsons, J. Human chorionic gonadotropin-to oocyte collection interval in a superovulation IVF program. A prospective study. J. Assist. Reprod. Genet. 2001, 18, 87–90. [Google Scholar] [CrossRef]
Baseline Characteristics | Normal Responders | Excessive Responders | Total Patients |
---|---|---|---|
Patients | 404 | 107 | 511 |
Age (year) | 37.4 ± 5.0 a | 33.4 ± 5.5 a | 36.4 ± 5.4 |
AMH (ng/mL) | 3.5 ± 2.8 b | 8.3 ± 4.2 b | 4.6 ± 3.7 |
No of cycles in each group of hCG-OPU interval | |||
34–35 h | 31 | 10 | 40 |
35–36 h | 96 | 17 | 104 |
36–37 h | 139 | 36 | 171 |
37–38 h | 105 | 33 | 135 |
38–39 h | 33 | 11 | 42 |
Mean of hCG-OPU interval | 36.3 ± 1.0 | 36.4 ± 1.1 | 36.3 ± 1.0 |
Total gonadotropin dose | 3350 ± 718 c | 3101 ± 624 c | 3290 ± 702 |
No. of oocytes | 11.8 ± 5.0 d | 29.8 ± 7.4 d | 15.8 ± 9.3 |
Oocyte maturation rates (mean ± SD) | 78.7 ± 13.0 | 80.8 ± 11.6 | 79.2 ± 12.8 |
Fertilization rates (mean ± SD) | 78.5 ± 19.5 e | 74.0 ± 16.1 e | 77.3 ± 19.0 |
Blastocyst rates (mean ± SD) | 46.0 ± 23.4 f | 40.3 ± 17.9 f | 44.6 ± 22.5 |
Total biopsied blastocyst no. | 1208 | 681 | 1889 |
Blastocyst morphology | |||
Excellent quality (%) | 14.2 (172/1208) | 15.7 (107/681) | 14.8 (279/1889) |
Good quality (%) | 85.8 (1036/1208) | 84.3 (574/681) | 85.2 (1610/1889) |
Euploidy rate (%) | 34.9 (421/1208) | 39.1 (266/681) | 36.4 (687/1889) |
Univariate Regression Analysis | ||||
Variables | B | Odds Ratio | 95% CI * | p Value |
hCG-OPU interval, per 1 increment (h) | 0.125 | 1.133 | 1.020–1.257 | 0.019 |
Women age, per 1 increment (yr) | −0.077 | 0.926 | 0.907–0.945 | <0.0001 |
AMH | 0.017 | 1.017 | 0.987–1.047 | 0.265 |
Oocyte numbers, per 1 increment | 0.013 | 1.013 | 1.003–1.023 | 0.010 |
Ovarian response groups, excessive v.s. normal | 0.185 | 0.831 | 0.651–1.060 | 0.136 |
Embryo grades, A v.s. B | −0.083 | 0.921 | 0.843–1.006 | 0.067 |
Total FSH dosage, per 1,000 increment (IU) | 0.000 | 1.000 | 1.000–1.000 | 0.105 |
Maturation rates, per 10 increment (%) | 0.665 | 1.945 | 0.717–5.273 | 0.191 |
Fertilization rates, per 10 increment (%) | 0.187 | 1.206 | 0.610–2.383 | 0.590 |
Blastocyst rates, per 10 increment (%) | 0.660 | 1.934 | 1.067–3.507 | 0.030 |
Male age, per 1 increment (yr) | −0.020 | 0.980 | 0.962–0.998 | 0.031 |
Multivariate Regression Analysis | ||||
Variables | B | Odds Ratio | 95% CI * | p Value |
hCG-OPU interval, per 1 increment (h) | 0.129 | 1.138 | 1.028–1.260 | 0.013 |
Women age, per 1 increment (yr) | −0.078 | 0.925 | 0.903–0.948 | <0.0001 |
Oocyte numbers, per 1 increment | −0.006 | 0.995 | 0.983–1.006 | 0.361 |
Blastocyst rates, per 10 increment (%) | 0.357 | 1.429 | 0.743–2.750 | 0.284 |
Male age, per 1 increment (yr) | −0.004 | 0.996 | 0.979–1.013 | 0.653 |
Groups | Euploidy Rates (%) | Cochran-Armitage Trend Test | ||||
---|---|---|---|---|---|---|
hCG-OPU Intervals | 34–35 h | 35–36 h | 36–37 h | 37–38 h | 38–39 h | p Values |
Overall | 27.8 (45/162) | 35.2 (144/409) | 39.9 (241/604) | 37.4 (187/500) | 40.9 (70/171) | 0.019 |
Normal responders | 28.7 (29/101) | 31.4 (88/280) | 34.1 (143/419) | 38.1 (114/299) | 43.1 (47/109) | 0.006 |
Excessive responders | 26.2 (16/61) | 43.3 (56/129) | 43.0 (98/228) | 36.3 (73/201) | 37.1 (23/62) | 0.880 |
Women age < 38 years | 32.3 (40/124) | 43.3 (109/252) | 43.1 (195/452) | 39.8 (127/319) | 48.7 (57/117) | 0.122 |
Women age ≥ 38 years | 13.2 (5/38) | 22.3 (35/157) | 25.1 (46/195) | 23.1 (60/181) | 24.1 (13/54) | 0.020 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-I.; Chen, H.-H.; Huang, C.-C.; Chen, C.-H.; Cheng, E.-H.; Huang, J.Y.; Lee, M.-S.; Lee, T.-H. Effect of Interval between Human Chorionic Gonadotropin Priming and Ovum Pick-up on the Euploid Probabilities of Blastocyst. J. Clin. Med. 2020, 9, 1685. https://doi.org/10.3390/jcm9061685
Lee C-I, Chen H-H, Huang C-C, Chen C-H, Cheng E-H, Huang JY, Lee M-S, Lee T-H. Effect of Interval between Human Chorionic Gonadotropin Priming and Ovum Pick-up on the Euploid Probabilities of Blastocyst. Journal of Clinical Medicine. 2020; 9(6):1685. https://doi.org/10.3390/jcm9061685
Chicago/Turabian StyleLee, Chun-I, Hsiu-Hui Chen, Chun-Chia Huang, Chien-Hong Chen, En-Hui Cheng, Jing Yang Huang, Maw-Sheng Lee, and Tsung-Hsien Lee. 2020. "Effect of Interval between Human Chorionic Gonadotropin Priming and Ovum Pick-up on the Euploid Probabilities of Blastocyst" Journal of Clinical Medicine 9, no. 6: 1685. https://doi.org/10.3390/jcm9061685
APA StyleLee, C.-I., Chen, H.-H., Huang, C.-C., Chen, C.-H., Cheng, E.-H., Huang, J. Y., Lee, M.-S., & Lee, T.-H. (2020). Effect of Interval between Human Chorionic Gonadotropin Priming and Ovum Pick-up on the Euploid Probabilities of Blastocyst. Journal of Clinical Medicine, 9(6), 1685. https://doi.org/10.3390/jcm9061685