Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both?
Abstract
1. Introduction
2. SGLT2 Inhibitors and Kidney Events
3. Effects of SGLT2 Inhibitors on Muscle Mass
4. The Effect of Loss of Muscle Mass on Creatinine-Based eGFR Trajectories
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.J.; Foley, R.N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; St Peter, W.; et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 2012, 59, e1–e420. [Google Scholar]
- Parving, H.H.; Lehnert, H.; Brochner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001, 345, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. RENAAL Study Investigators Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- de Zeeuw, D.; Akizawa, T.; Audhya, P.; Bakris, G.L.; Chin, M.; Christ-Schmidt, H.; Goldsberry, A.; Houser, M.; Krauth, M.; Lambers Heerspink, H.J.; et al. BEACON Trial Investigators Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 2013, 369, 2492–2503. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. DECLARE-TIMI 58 Investigators Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. EMPA-REG OUTCOME Investigators Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. CANVAS Program Collaborative Group Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. EMPA-REG OUTCOME Investigators Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. CREDENCE Trial Investigators Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Neuen, B.L.; Young, T.; Heerspink, H.J.L.; Neal, B.; Perkovic, V.; Billot, L.; Mahaffey, K.W.; Charytan, D.M.; Wheeler, D.C.; Arnott, C.; et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019, 7, 845–854. [Google Scholar] [CrossRef]
- Post, A.; Eisenga, M.F.; Bakker, S.J.L. Canagliflozin and Renal Outcomes in Diabetic Nephropathy. N. Engl. J. Med. 2019, 381, 1089. [Google Scholar] [PubMed]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs 2019, 79, 219–230. [Google Scholar] [CrossRef]
- Lee, P.C.; Ganguly, S.; Goh, S.Y. Weight loss associated with sodium-glucose cotransporter-2 inhibition: A review of evidence and underlying mechanisms. Obes. Rev. 2018, 19, 1630–1641. [Google Scholar] [CrossRef]
- Mearns, E.S.; Sobieraj, D.M.; White, C.M.; Saulsberry, W.J.; Kohn, C.G.; Doleh, Y.; Zaccaro, E.; Coleman, C.I. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: A network meta-analysis. PLoS ONE 2015, 10, e0125879. [Google Scholar] [CrossRef]
- Zaccardi, F.; Webb, D.R.; Htike, Z.Z.; Youssef, D.; Khunti, K.; Davies, M.J. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta-analysis. Diabetes Obes. Metab. 2016, 18, 783–794. [Google Scholar] [CrossRef]
- Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.; Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 262–274. [Google Scholar] [CrossRef]
- Weinheimer, E.M.; Sands, L.P.; Campbell, W.W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: Implications for sarcopenic obesity. Nutr. Rev. 2010, 68, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Schork, A.; Saynisch, J.; Vosseler, A.; Jaghutriz, B.A.; Heyne, N.; Peter, A.; Haring, H.U.; Stefan, N.; Fritsche, A.; Artunc, F. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: A prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 2019, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; et al. Dapagliflozin Reduces Fat Mass without Affecting Muscle Mass in Type 2 Diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476. [Google Scholar] [CrossRef]
- Inoue, H.; Morino, K.; Ugi, S.; Tanaka-Mizuno, S.; Fuse, K.; Miyazawa, I.; Kondo, K.; Sato, D.; Ohashi, N.; Ida, S.; et al. SUMS-ADDIT-1 Research group Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. J. Diabetes. Investig. 2019, 10, 1012–1021. [Google Scholar] [PubMed]
- Lundkvist, P.; Sjostrom, C.D.; Amini, S.; Pereira, M.J.; Johnsson, E.; Eriksson, J.W. Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes. Metab. 2017, 19, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Shirabe, S.I.; Maeda, H.; Yoshimoto, A.; Arai, K.; Kumakura, A.; Hirao, K.; Terauchi, Y. Effect of canagliflozin on the overall clinical state including insulin resistance in Japanese patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 149, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Blonde, L.; Stenlof, K.; Fung, A.; Xie, J.; Canovatchel, W.; Meininger, G. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. Postgrad. Med. 2016, 128, 371–380. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Leiter, L.A.; Yoon, K.H.; Arias, P.; Niskanen, L.; Xie, J.; Balis, D.A.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950. [Google Scholar] [CrossRef]
- Sasaki, T.; Sugawara, M.; Fukuda, M. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: The Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study. J. Diabetes Investig. 2019, 10, 108–117. [Google Scholar] [CrossRef]
- Ohta, A.; Kato, H.; Ishii, S.; Sasaki, Y.; Nakamura, Y.; Nakagawa, T.; Nagai, Y.; Tanaka, Y. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert Opin. Pharmacother. 2017, 18, 1433–1438. [Google Scholar] [CrossRef]
- Matsuba, R.; Matsuba, I.; Shimokawa, M.; Nagai, Y.; Tanaka, Y. Tofogliflozin decreases body fat mass and improves peripheral insulin resistance. Diabetes Obes. Metab. 2018, 20, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Kamei, S.; Iwamoto, M.; Kameyama, M.; Shimoda, M.; Kinoshita, T.; Obata, A.; Kimura, T.; Hirukawa, H.; Tatsumi, F.; Kohara, K.; et al. Effect of Tofogliflozin on Body Composition and Glycemic Control in Japanese Subjects with Type 2 Diabetes Mellitus. J. Diabetes Res. 2018, 2018, 6470137. [Google Scholar] [CrossRef]
- Inoue, M.; Hayashi, A.; Taguchi, T.; Arai, R.; Sasaki, S.; Takano, K.; Inoue, Y.; Shichiri, M. Effects of canagliflozin on body composition and hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease. J. Diabetes Investig. 2019, 10, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol. Res. 2017, 47, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Sakai, K.; Saito, K.; Tsutsui, K.; Yamashita, S.; Kato, N. Efficacy and safety of ipragliflozin in Japanese patients with type 2 diabetes receiving conventional therapy: Clinical implication of the importance of exercise habits during treatment with ipragliflozin. Diabetol. Int. 2017, 8, 275–285. [Google Scholar] [CrossRef]
- Miyake, T.; Yoshida, S.; Furukawa, S.; Sakai, T.; Tada, F.; Senba, H.; Yamamoto, S.; Koizumi, Y.; Yoshida, O.; Hirooka, M.; et al. Ipragliflozin Ameliorates Liver Damage in Non-alcoholic Fatty Liver Disease. Open Med. 2018, 13, 402–409. [Google Scholar] [CrossRef]
- Yamamoto, C.; Miyoshi, H.; Ono, K.; Sugawara, H.; Kameda, R.; Ichiyama, M.; Yamamoto, K.; Nomoto, H.; Nakamura, A.; Atsumi, T. Ipragliflozin effectively reduced visceral fat in Japanese patients with type 2 diabetes under adequate diet therapy. Endocr. J. 2016, 63, 589–596. [Google Scholar] [CrossRef]
- Bouchi, R.; Terashima, M.; Sasahara, Y.; Asakawa, M.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: A pilot study. Cardiovasc. Diabetol. 2017, 16, 32. [Google Scholar] [CrossRef]
- Seino, Y.; Yabe, D.; Sasaki, T.; Fukatsu, A.; Imazeki, H.; Ochiai, H.; Sakai, S. Sodium-glucose cotransporter-2 inhibitor luseogliflozin added to glucagon-like peptide 1 receptor agonist liraglutide improves glycemic control with bodyweight and fat mass reductions in Japanese patients with type 2 diabetes: A 52-week, open-label, single-arm study. J. Diabetes. Investig. 2018, 9, 332–340. [Google Scholar]
- Bolinder, J.; Ljunggren, O.; Kullberg, J.; Johansson, L.; Wilding, J.; Langkilde, A.M.; Sugg, J.; Parikh, S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 2012, 97, 1020–1031. [Google Scholar] [CrossRef]
- Kosugi, R.; Nakatani, E.; Okamoto, K.; Aoshima, S.; Arai, H.; Inoue, T. Effects of sodium-glucose cotransporter 2 inhibitor (dapagliflozin) on food intake and plasma fibroblast growth factor 21 levels in type 2 diabetes patients. Endocr. J. 2019, 66, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Bonora, B.M.; Zatti, G.; Vitturi, N.; Iori, E.; Marescotti, M.C.; Albiero, M.; Avogaro, A. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: A randomized placebo-controlled trial. Cardiovasc. Diabetol. 2017, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, Y.; Hirose, S.; Nakajima, S.; Seo, A.; Takahashi, T.; Tamori, Y. Evaluation of metabolic parameters and body composition in Japanese patients with type 2 diabetes mellitus who were administered tofogliflozin for 48 weeks. Diabetol. Int. 2016, 8, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Papageorgiou, M.; Deshmukh, H.; Rigby, A.S.; Qamar, U.; Abbas, J.; Khan, A.Y.; Kilpatrick, E.S.; Atkin, S.L.; Sathyapalan, T. Effects of empagliflozin on metabolic parameters in polycystic ovary syndrome: A randomized controlled study. Clin. Endocrinol. 2019, 90, 805–813. [Google Scholar] [CrossRef]
- Post, A.; Tsikas, D.; Bakker, S.J.L. Creatine is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients 2019, 11, 1044. [Google Scholar] [CrossRef]
- Post, A.; Ozyilmaz, A.; Westerhuis, R.; Ipema, K.J.R.; Bakker, S.J.L.; Franssen, C.F.M. Complementary Biomarker Assessment of Components Absorbed from Diet and Creatinine Excretion Rate Reflecting Muscle Mass in Dialysis Patients. Nutrients 2018, 10, 1827. [Google Scholar] [CrossRef]
- Oterdoom, L.H.; van Ree, R.M.; de Vries, A.P.; Gansevoort, R.T.; Schouten, J.P.; van Son, W.J.; Homan van der Heide, J.J.; Navis, G.; de Jong, P.E.; Gans, R.O.; et al. Urinary creatinine excretion reflecting muscle mass is a predictor of mortality and graft loss in renal transplant recipients. Transplantation 2008, 86, 391–398. [Google Scholar] [CrossRef]
- Oterdoom, L.H.; Gansevoort, R.T.; Schouten, J.P.; de Jong, P.E.; Gans, R.O.; Bakker, S.J. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 2009, 207, 534–540. [Google Scholar] [CrossRef]
- Lin, X.; Zeng, X.Z.; Ai, J. The Glomerular Filtration Rate (GFR) at Dialysis Initiation and Mortality in Chronic Kidney Disease (CKD) in East Asian Populations: A Meta-analysis. Intern. Med. 2016, 55, 3097–3104. [Google Scholar] [CrossRef]
- Kurella Tamura, M.; O’Hare, A.M.; McCulloch, C.E.; Johansen, K.L. Signs and symptoms associated with earlier dialysis initiation in nursing home residents. Am. J. Kidney Dis. 2010, 56, 1117–1126. [Google Scholar] [CrossRef]
- Bae, J.H.; Park, E.G.; Kim, S.; Kim, S.G.; Hahn, S.; Kim, N.H. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2019, 9, 13009. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.; Kropelin, T.F.; Hoekman, J.; de Zeeuw, D. Reducing Albuminuria as Surrogate Endpoint (REASSURE) Consortium Drug-Induced Reduction in Albuminuria Is Associated with Subsequent Renoprotection: A Meta-Analysis. J. Am. Soc. Nephrol. 2015, 26, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Hoste, L.; Deiteren, K.; Pottel, H.; Callewaert, N.; Martens, F. Routine serum creatinine measurements: How well do we perform? BMC Nephrol. 2015, 16, 21-015-0012-x. [Google Scholar] [CrossRef] [PubMed]
- Kume, T.; Saglam, B.; Ergon, C.; Sisman, A.R. Evaluation and comparison of Abbott Jaffe and enzymatic creatinine methods: Could the old method meet the new requirements? J. Clin. Lab. Anal. 2018, 32, e22168. [Google Scholar] [CrossRef] [PubMed]
Study | SGLT2 Inhibitor | Dosage (mg/Day) | Time (Weeks) | Design | Participants | Measurement | Technique | Baseline Value | Change * | Significance | Percentual Change ** |
---|---|---|---|---|---|---|---|---|---|---|---|
Canagliflozin | |||||||||||
Blonde et al. [27] | Canagliflozin | 100 300 | 26 | Double-blind randomized placebo controlled parallel group | 166 | Lean body mass | DXA | 51.2 kg 53.2 kg | −0.6 kg −0.9 kg | Yes | −1.2% (−2.4%) −1.7% (−3.4%) |
Cefalu et al. [28] | Canagliflozin | 100 300 | 52 | Double-blind randomized, active controlled parallel group | 208 | Lean body mass | DXA | 47.7 kg 44.6 kg | −2.0 kg −2.2 kg | Yes | −4.2% (−4.2%) −4.9% (−4.9%) |
Koike et al. [26] | Canagliflozin | 100 | 24 | Single-arm open-label | 38 | Lean body mass | DXA | 49.6 kg | −1.1 kg | Yes | −2.2% (−4.8%) |
Inoue et al. [33] | Canagliflozin | 100 | 52 | Single-arm open-label | 20 | Lean body mass | BIA | 51.5 kg | −0.2 kg | No | −0.4% (−0.4%) |
Seko et al. [34] | Canagliflozin and Ipragliflozin | 100 (Cana) 50 (Ipra) | 24 | Single-arm open-label | 24 | Skeletal muscle mass | BIA | 25.4 kg | −0.6 kg | Yes | −2.3% (−5.1%) |
Ipragliflozin | |||||||||||
Inoue et al. [24] | Ipragliflozin | 50 | 24 | Open-label randomized controlled parallel group | 49 | Muscle mass and lean mass | BIA DXA | 47.1 kg 41.0 kg | −0.38 kg −0.60 kg | No No | −0.8% (−1.7%) −1.5% (−3.2%) |
Ohta et al. [30] | Ipragliflozin | 50 | 24 | Single-arm open-label | 20 | Lean body mass and appendicular lean mass | DXA | 52.2 kg 21.8 kg | −1.7 kg −0.6 kg | Yes Yes | −3.3% (−7.1%) −2.7% (−6.0%) |
Kato et al. [35] | Ipragliflozin | 50 | 12 | Single-arm open-label | 20 | Muscle mass | BIA | n.r. | −0.92 kg | Yes | n.a |
Miyake et al. [36] | Ipragliflozin | 50 | 24 | Single-arm open-label | 12 | Skeletal muscle mass | BIA | 22.75 kg | −0.50 kg | No | −2.2% (−4.8%) |
Yamamoto et al. [37] | Ipragliflozin | 50 | 16 | Single-arm open-label | 24 | Skeletal muscle index | BIA | 7.5 kg/m2 | −0.2 kg/m2 | Yes | −2.7% (8.7%) |
Luseogliflozin | |||||||||||
Bouchi et al. [38] | Luseogliflozin | 2.5 to 5 | 12 | Single-arm open-label | 19 | Skeletal muscle index | DXA | 7.81 kg/m2 | −0.23 kg/m2 | Yes | −2.9% (−12.8%) |
Seino et al. [39] | Luseogliflozin | 2.5 to 5 | 52 | Single-arm open-label | 22 | Lean body mass | BIA | 45.25 kg | −0.44 kg | No | −1.0% (−1.0%) |
Sasaki et al. [29] | Luseogliflozin | 2.5 to 5 | 52 | Single-arm open-label | 36 | Skeletal muscle mass index | DXA | 7.74 kg/m2 | −0.155 kg/m2 | Yes | −2.0% (−2.0%) |
Dapagliflozin | |||||||||||
Bolinder et al. [40] | Dapagliflozin | 10 | 24 | Double-blind randomized placebo controlled parallel group | 182 | Lean body mass | DXA | 56.2 kg | −0.60 kg | Yes | −1.1% (−2.3%) |
Kosugi et al. [41] | Dapagliflozin | 5 | 12 | Single-arm open-label | 26 | Lean body mass | DXA | 52.0 kg | −0.50 kg | No | −1.0% (−4.2%) |
Fadini et al. [42] | Dapagliflozin | 10 | Single-blind placebo controlled parallel group | 31 | Lean body mass | BIA | n.r. | −2.9 kg | Yes | n.a. | |
Tobita et al. | Dapagliflozin | 5 | 24 | Single-arm open-label | 11 | Skeletal muscle mass | BIA | 24.6 kg | +0.1 kg | No | +0.4% (+0.9%) |
Lundkvist et al. [25] | Dapagliflozin | 10 | 24 | Double-blind randomized placebo controlled parallel group | 50 | Total lean tissue | MRI | 42.6 L | −0.19 L | No | −0.4% (−1.0%) |
Sugiyama et al. [23] | Dapagliflozin | 5 | 26 | Open-label active controlled parallel group | 50 | Skeletal muscle mass | BIA | 28.7 kg | −0.2 kg | No | −0.7% (−1.4%) |
Tofogliflozine | |||||||||||
Kamei et al. [32] | Tofogliflozin | 20 | 12 | Retrospective single-arm open-label | 37 | Muscle mass | BIA | 29.8 kg | −0.8 kg | Yes | −2.7% (−11.6%) |
Matsuba et al. [31] | Tofogliflozin | 20 | 12 | Single-arm open-label study | 16 | Muscle mass | BIA | n.r. | −1.37 kg | Yes | n.a. |
Iwahashi et al. [43] | Tofogliflozin | 20 | 48 | Single-arm open-label study | 20 | Lean body mass | BIA | 47.3 kg | +0.2 kg | No | +0.4% (+0.5%) |
Empagliflozin | |||||||||||
Javed et al. [44] | Empagliflozin | 25 | 12 | Open-label randomized placebo controlled parallel group | 39 | Lean body mass | BIA | 54.8 kg | −1.7 kg | Yes | −3.1% (−13.4%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Post, A.; Groothof, D.; Eisenga, M.F.; Bakker, S.J.L. Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both? J. Clin. Med. 2020, 9, 1603. https://doi.org/10.3390/jcm9051603
Post A, Groothof D, Eisenga MF, Bakker SJL. Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both? Journal of Clinical Medicine. 2020; 9(5):1603. https://doi.org/10.3390/jcm9051603
Chicago/Turabian StylePost, Adrian, Dion Groothof, Michele F. Eisenga, and Stephan J. L. Bakker. 2020. "Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both?" Journal of Clinical Medicine 9, no. 5: 1603. https://doi.org/10.3390/jcm9051603
APA StylePost, A., Groothof, D., Eisenga, M. F., & Bakker, S. J. L. (2020). Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both? Journal of Clinical Medicine, 9(5), 1603. https://doi.org/10.3390/jcm9051603