Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Friedman, D.S.; Fechtner, R.D.; Cioffi, G.A.; Coleman, A.L.; Girkin, C.A.; Liebmann, J.M.; Singh, K.; Wilson, M.R.; Wilson, R.; et al. Risk assessment in the management of patients with ocular hypertension. Am. J. Ophthalmol. 2004, 138, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Allen, K.A. Topography of ganglion cells in human retina. J. Comp. Neurol. 1990, 300, 5–25. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Fatehi, N.; Yarmohammadi, A.; Lee, J.W.; Sharifipour, F.; Daneshvar, R.; Caprioli, J.; Nouri-Mahdavi, K. Macular Imaging with Optical Coherence Tomography in Glaucoma. Surv. Ophthalmol. 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Nelson, R.F.; Ahnelt, P.K.; Ortuño-Lizarán, I.; Cuenca, N. The Architecture of the Human Fovea. In Webvision: The Organization of the Retina and Visual System; Kolb, H., Fernandez, E., Nelson, R., Eds.; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 2020. [Google Scholar]
- Wang, M.; Hood, D.C.; Cho, J.S.; Ghadiali, Q.; De Moraes, C.G.; Zhang, X.; Ritch, R.; Liebmann, J.M. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch. Ophthalmol. 2009, 127, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, J.; Folio, L.S.; Wollstein, G.; Ishikawa, H.; Ling, Y.; Bilonick, R.A.; Kagemann, L.; Schuman, J.S. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br. J. Ophthalmol. 2012, 96, 1420–1425. [Google Scholar] [CrossRef]
- Kita, Y.; Kita, R.; Takeyama, A.; Anraku, A.; Tomita, G.; Goldberg, I. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: A spectral-domain optical coherence tomography study. Clin. Exp. Ophthalmol. 2013, 41, 674–682. [Google Scholar] [CrossRef]
- Pazos, M.; Dyrda, A.A.; Biarnés, M.; Gómez, A.; Martín, C.; Mora, C.; Fatti, G.; Antón, A. Diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology 2017, 124, 1218–1228. [Google Scholar] [CrossRef]
- Cifuentes-Canorea, P.; Ruiz-Medrano, J.; Gutierrez-Bonet, R.; Peña-Garcia, P.; Saenz-Frances, F.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M. Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients. PLoS ONE 2018, 13, e0196112. [Google Scholar] [CrossRef]
- Unterlauft, J.D.; Rehak, M.; Böhm, M.R.R.; Rauscher, F.G. Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography. PLoS ONE 2018, 13, e0209610. [Google Scholar] [CrossRef] [PubMed]
- Vianna, J.R.; Butty, Z.; Torres, L.A.; Sharpe, G.P.; Hutchison, D.M.; Shuba, L.M.; Nicolela, M.T.; Chauhan, B.C. Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects. Br. J. Ophthalmol. 2019, 103, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Stein, D.M.; Wollstein, G.; Beaton, S.; Fujimoto, J.G.; Schuman, J.S. Macular segmentation with optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2012–2017. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Huang, N.; Lam, D.S.; Leung, C.K. Measurement of photoreceptor layer in glaucoma: A spectral-domain optical coherence tomography study. J. Ophthalmol. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- García-Medina, J.J.; Del-Rio-Vellosillo, M.; Palazón-Cabanes, A.; Tudela-Molino, M.; Gómez-Molina, C.; Guardiola-Fernández, A.; Villegas-Pérez, M.P. Mapping the thickness changes on retinal layers segmented by spectral-domain optical coherence tomography using the posterior pole program in glaucoma. Arch. Soc. Esp. Oftalmol. 2018, 93, 263–273. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, S.; Ma, Q.; Lin, H.; Pan, M.; Liu, X.; Lu, F.; Shen, M. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Doughty, M.J.; Zaman, M.L. Human corneal thickness and its impact on intraocular pressure measures: A review and meta-analysis approach. Surv. Ophthalmol. 2000, 44, 367–408. [Google Scholar] [CrossRef]
- Hodapp, E.; Parrish, R.K.I.I.; Anderson, D.R. Clinical Decisions in Glaucoma; Mosby Year Book Medical Publishers: St. Louis, MO, USA, 1993; pp. 52–61. [Google Scholar]
- Lujan, B.J.; Roorda, A.; Croskrey, J.A.; Dubis, A.M.; Cooper, R.F.; Bayabo, J.K.; Duncan, J.L.; Antony, B.J.; Carroll, J. Directional optical coherence tomography provides accurate outer nuclear layer and henle fibre layer measurements. Retina 2015, 35, 1511–1520. [Google Scholar] [CrossRef]
- Sullivan-Mee, M.; Ruegg, C.C.; Pensyl, D.; Halverson, K.; Qualls, C. Diagnostic precision of retinal nerve fibre layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma. Am. J. Ophthalmol. 2013, 156, 567–577.e1. [Google Scholar] [CrossRef]
- Ghasia, F.F.; El-Dairi, M.; Freedman, S.F.; Rajani, A.; Asrani, S. Reproducibility of spectral- domain optical coherence tomography measurements in adult and pediatric glaucoma. J. Glaucoma 2015, 24, 55–63. [Google Scholar] [CrossRef]
- Rolle, T.; Manerba, L.; Lanzafame, P.; Grignolo, F.M. Diagnostic Power of Macular Retinal Thickness Analysis and Structure-Function Relationship in Glaucoma Diagnosis Using SPECTRALIS OCT. Curr. Eye Res. 2016, 41, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, S.Y.; Park, K.H.; Kim, D.M.; Jeoung, J.W. Glaucoma Diagnostic Ability of Layer-by-Layer Segmented Ganglion Cell Complex by Spectral-Domain Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4799–4805. [Google Scholar] [CrossRef] [PubMed]
- Michelessi, M.; Riva, I.; Martini, E.; Figus, M.; Frezzotti, P.; Agnifili, L.; Manni, G.; Quaranta, L.; Miglior, S.; Posarelli, C.; et al. Macular versus nerve fibre layer versus optic nerve head imaging for diagnosing glaucoma at different stages of the disease: Multicenter Italian Glaucoma Imaging Study. Acta Ophthalmol. 2019, 97, e207–e215. [Google Scholar] [CrossRef] [PubMed]
- Barua, N.; Sitaraman, C.; Goel, S.; Chakraborti, C.; Mukherjee, S.; Parashar, H. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fibre layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population. Indian J. Ophthalmol. 2016, 64, 296–302. [Google Scholar]
- Edlinger, F.S.M.; Schrems-Hoesl, L.M.; Mardin, C.Y.; Laemmer, R.; Kruse, F.E.; Schrems, W.A. Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1245–1256. [Google Scholar] [CrossRef]
- Tsamis, E.; Bommakanti, N.K.; Sun, A.; Thakoor, K.A.; De Moraes, C.G.; Hood, D.C. An automated method for assessing topographical structure–function agreement in abnormal glaucomatous regions. Trans. Vis. Sci. Tech. 2020, 9, 14. [Google Scholar] [CrossRef]
- Kim, K.E.; Jeoung, J.W.; Park, K.H.; Kim, D.M.; Kim, S.H. Diagnostic classification of macular ganglion cell and retinal nerve fibre layer analysis: Differentiation of false-positives from glaucoma. Ophthalmology 2015, 122, 502–510. [Google Scholar] [CrossRef]
- Wilsey, L.J.; Reynaud, J.; Cull, G.; Burgoyne, C.F.; Fortune, B. Macular Structure and Function in Nonhuman Primate Experimental Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1892–1900. [Google Scholar] [CrossRef]
- Nork, T.M.; Ver Hoeve, J.N.; Poulsen, G.L.; Nickells, R.W.; Davis, M.D.; Weber, A.J.; Vaegan Sarks, S.H.; Lemley, H.L.; Millecchia, L.L. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch. Ophthalmol. 2000, 118, 235–245. [Google Scholar] [CrossRef]
OHT Group (n = 57) | Early POAG Group (n = 57) | p | |
---|---|---|---|
Sex (male/female) | 23/34 | 22/35 | 1 ‡ |
Age (years) | 65.71 ± 11.80 | 70.68 ± 11.81 | 0.127 |
Right eye/Left eye | 28/29 | 25/32 | 0.782 ‡ |
BCVA (decimal) | 0.95 ± 0.24 | 0.91 ± 0.46 | 0.210 |
IOP (mmHg) | 18.74 ± 3.76 | 18.09 ± 3.64 | 0.352 |
Vertical cupping | 0.35 ± 0.20 | 0.51 ± 0.26 | <0.001 |
MD (dB) | −0.96 ± 0.51 | −3.39 ± 1.59 | 0.013 |
PSD (dB) | 1.05 ± 0.52 | 3.62 ± 2.06 | 0.009 |
Number of antiglaucoma eyedrops | 1.01 ± 0.86 | 1.46 ± 0.88 | 0.006 § |
Layer | Hemisphere | OHT (Microns) | Early POAG (Microns) | Difference of Means (Microns) | p |
---|---|---|---|---|---|
mRNFL | Superior | 42.58 ± 7.19 | 35.11 ± 7.98 | 7.47 | <0.001 |
Inferior | 37.25 ± 7.43 | 32.04 ± 5.72 | 5.21 | <0.001 | |
GCL | Superior | 30.98 ± 2.94 | 28.75 ± 3.65 | 2.23 | 0.001 |
Inferior | 30.68 ± 3.17 | 28.97 ± 3.54 | 1.71 | 0.09 | |
IPL | Superior | 25.67 ± 2.34 | 24.57 ± 2.40 | 1.10 | 0.016 |
Inferior | 26.25 ± 2.38 | 25.25 ± 2.38 | 0.99 | 0.032 | |
INL | Superior | 30.60 ± 2.32 | 31.49 ± 2.45 | −0.88 | 0.055 |
Inferior | 30.43 ± 2.52 | 31.53 ± 2.67 | −1.09 | 0.029 | |
OPL and ONL | Superior | 76.58 ± 4.93 | 78.07 ± 6.46 | −1.49 | 0.169 |
Inferior | 81.23 ± 5.08 | 82.41 ± 6.54 | −1.17 | 0.286 | |
PRL | Superior | 75.95 ± 2.52 | 77.21 ± 2.65 | −1.25 | 0.012 |
Inferior | 77.31 ± 2.51 | 78.35 ± 2.62 | −1.04 | 0.036 | |
RPE | Superior | 12.30 ± 1.18 | 12.64 ± 1.19 | −0.33 | 0.138 |
Inferior | 12.65 ± 1.36 | 12.84 ± 1.35 | −0.19 | 0.460 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Medina, J.J.; del-Rio-Vellosillo, M.; Palazon-Cabanes, A.; Pinazo-Duran, M.D.; Zanon-Moreno, V.; Villegas-Perez, M.P. Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT. J. Clin. Med. 2020, 9, 1503. https://doi.org/10.3390/jcm9051503
Garcia-Medina JJ, del-Rio-Vellosillo M, Palazon-Cabanes A, Pinazo-Duran MD, Zanon-Moreno V, Villegas-Perez MP. Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT. Journal of Clinical Medicine. 2020; 9(5):1503. https://doi.org/10.3390/jcm9051503
Chicago/Turabian StyleGarcia-Medina, Jose Javier, Monica del-Rio-Vellosillo, Ana Palazon-Cabanes, Maria Dolores Pinazo-Duran, Vicente Zanon-Moreno, and Maria Paz Villegas-Perez. 2020. "Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT" Journal of Clinical Medicine 9, no. 5: 1503. https://doi.org/10.3390/jcm9051503
APA StyleGarcia-Medina, J. J., del-Rio-Vellosillo, M., Palazon-Cabanes, A., Pinazo-Duran, M. D., Zanon-Moreno, V., & Villegas-Perez, M. P. (2020). Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT. Journal of Clinical Medicine, 9(5), 1503. https://doi.org/10.3390/jcm9051503