Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCloskey, B.; Heymann, D.L. SARS to novel coronavirus: Old lessons and new lessons. Epidemiol. Infect. 2020, 148, e22. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; China Medical Treatment Expert Group for Covid-19; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 2020, 92, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wang, D.; Yin, Y.; Hu, C.; Liu, X.; Zhang, X.; Zhou, S.; Jian, M.; Xu, H.; Prowle, J.; Hu, B.; et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit. Care 2020, 24, 188. [Google Scholar] [CrossRef] [PubMed]
- Stief, T.W.; Ijagha, O.; Weiste, B.; Herzum, I.; Renz, H.; Max, M. Analysis of hemostasis alterations in sepsis. Blood Coagul. Fibrinolysis 2007, 18, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Di Micco, B.; Metafora, S.; Colonna, G.; Cartenì, M.; Ragone, R.; Macalello, M.A.; Di Micco, P.; Baroni, A.; Catalanotti, P.; Tufano, M.A. Porins from Salmonella typhimurium accelerate human blood coagulation in vitro by selective stimulation of thrombin activity: Implications in septic shock DIC pathogenesis. J. Endotoxin. Res. 2001, 7, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levi, M.; Levy, J.H. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Semin Thrombhemost 2020, 46, 89–95. [Google Scholar]
- Chang, J.C. Acute Respiratory Distress Syndrome as an Organ Phenotype of Vascular Microthrombotic Disease: Based on Hemostatic Theory and Endothelial Molecular Pathogenesis. Clin. Appl. Thromb. Hemost. 2019, 25, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thrombhaemost. 2020, 18. In Press. [Google Scholar] [CrossRef]
- Schutte, T.; Thijs, A.; Smulders, Y.M. Never ignore extremely elevated D-dimer levels: They are specific for serious illness. Neth. J. Med. 2016, 74, 443–448. [Google Scholar] [PubMed]
- Xia, Y.; Zou, L.; Li, D.; Qin, Q.; Hu, H.; Zhou, Y.; Cao, Y. The ability of an improved qSOFA score to predict acute sepsis severity and prognosis among adult patients. Medicine (Baltimore) 2020, 99, e18942. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Integrated diagnostics: The future of laboratory medicine? Biochem. Med. (Zagreb) 2020, 30, 010501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, L.; Yang, Y.; Peng, W.; Wang, W.; Chen, X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir. Med. 2020, 8, e11–e12. [Google Scholar] [CrossRef]
Patients’ Characteristics | COVID-19 Group N: 67 | Control Group N: 67 | p |
---|---|---|---|
Males, n (%) | 47 (70%) | 35 (52%) | 0.09 |
Age <40 yy, n (%) | 2 (3%) | 3 (4%) | 0.67 |
Age 40–60 yy, n (%) | 19 (28%) | 15 (22%) | 0.74 |
Age >60 yy, n (%) | 46 (68%) | 49 (73%) | 0.09 |
Cardiovascular diseases, n (%) | 28 (41%) | 25 (37%) | 0.99 |
Concomitant Antiplatelets Drugs, n (%) | 22 (32%) | 30 (44%) | 0.06 |
Concomitant Anticoagulants Drugs, n (%) | 6 (9%) | 10 (14%) | 0.12 |
Asymptomatic Pneumonia, n (%) | 2 (3%) | 0 (0%) | 0.24 |
Abnormal PT sec, n (%) | 16 (23%) | 7 (10%) | 0.09 |
Abnormal aPTT, n (%) | 2 (3%) | 1 (2%) | 0.73 |
D-dimer>500–700 mcg/dL, n (%) | 54 (80%) | 40 (59%) | 0.09 |
Fibrinogen >400 mg/dL, n (%) | 58 (86%) | 39 (58%) | 0.005 |
Parameter | COVID-19 Group | Control Group | FPTest p-Value | FKTest p-Value |
---|---|---|---|---|
PT seconds | 11(10.0–13.0) | 11(10.0–13.5) | 0.39 | 0.23 |
aPTT | 0.96(0.85–1.07) | 0.98(0.88–1.06) | 0.16 | 0.08 |
PLT(mmcube) | 360(244–413.5) | 323(272–371) | 0.28 | 0.13 |
CRP(mg/dL) | 13.46(5.63–25.83) | 11.00(6.00–25.00) | 0.38 | 0.88 |
Fibrinogen (mg/dL) | 622(448–796) | 455(352.5–588.5) | 0.0000064 | 0.71 |
D-dimer (mcg/dL) | 556(327–859) | 500(260 -650) | 0.10 | 0.15 |
Patients’ Characteristics | COVID-19 with SARS N: 24 | COVID-19 without SARS N: 43 | p |
---|---|---|---|
Males, n (%) | 15 (60%) | 30 (69%) | 0.73 |
Age <40 yy, n (%) | (0%) | 2 (4%) | 0.41 |
Age 40–60 yy, n (%) | 11 (45%) | 19 (44%) | 0.99 |
Age >60 yy, n (%) | 13 (54%) | 24 (54%) | 0.99 |
Cardiovascular diseases, n (%) | 14 (58%) | 14 (32%) | 0.07 |
Concomitant Antiplatelets Drugs, n (%) | 8 (33%) | 14 (32%) | 0.99 |
Concomitant Anticoagulants Drugs, n (%) | 1 (4%) | 2 (4%) | 0.99 |
Abnormal PT, n (sec.) | 8 33%) | 9 (20%) | 0.03 |
Abnormal aPTT, n (%) | 0 (0%) | 2 (4%) | 0.73 |
D-dimer >500–700 mcg/dL, n (%) | 21 (91%) | 33 (76%) | 0.41 |
Fibrinogen >400 mg/dL, n (%) | 22 (92%) | 35 (81%) | 0.81 |
Parameter | COVID-19 with SARS | COVID-19 without SARS | FP-Test p-Value | FK-Test p-Value |
---|---|---|---|---|
PT seconds | 1.17(1.10–1.27) | 1.15(1.10–1.22) | 0.56 | 0.45 |
aPTT | 0.92(0.81–1.12) | 0.89(0.80–1.04) | 0.14 | 0.62 |
PLT(mmcube) | 320(210–595) | 346(191–605) | 0.32 | 0.15 |
CRP(mg/dL) | 62(31–95) | 55(28–93) | 0.46 | 0.96 |
Fibrinogen (mg/dL) | 747(600.0–834.0) | 567(472.5–644.50) | 0.0003 | 0.48 |
D-dimer (mcg/dL) | 633(484–2324) | 500(281.75–740.50) | 0.075 | 0.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Micco, P.; Russo, V.; Carannante, N.; Imparato, M.; Rodolfi, S.; Cardillo, G.; Lodigiani, C. Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort. J. Clin. Med. 2020, 9, 1371. https://doi.org/10.3390/jcm9051371
Di Micco P, Russo V, Carannante N, Imparato M, Rodolfi S, Cardillo G, Lodigiani C. Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort. Journal of Clinical Medicine. 2020; 9(5):1371. https://doi.org/10.3390/jcm9051371
Chicago/Turabian StyleDi Micco, Pierpaolo, Vincenzo Russo, Novella Carannante, Michele Imparato, Stefano Rodolfi, Giuseppe Cardillo, and Corrado Lodigiani. 2020. "Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort" Journal of Clinical Medicine 9, no. 5: 1371. https://doi.org/10.3390/jcm9051371
APA StyleDi Micco, P., Russo, V., Carannante, N., Imparato, M., Rodolfi, S., Cardillo, G., & Lodigiani, C. (2020). Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort. Journal of Clinical Medicine, 9(5), 1371. https://doi.org/10.3390/jcm9051371