Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series
Abstract
1. Introduction
2. Experimental Section
2.1. Surgical Technique
2.2. Clinical Assessment
2.3. Radiographic Evaluation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shahid, M.; Hussain, A.; Bridgeman, P.; Bose, D. Clinical Outcomes of the Ilizarov Method after an Infected Tibial Non Union. Arch. Trauma Res. 2013, 2, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, A.; Singh, D.; Singh, R. Outcome of rail fixator system in reconstructing bone gap. Indian J. Orthop. 2014, 48, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Shortt, N.L.; Keenan, G.F.; Muir, A.Y.; Simpson, A.H. The use of a nerve stimulator to allow safe placement of Ilizarov wires. Oper. Orthop. Traumatol. 2006, 18, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Vescio, A.; Aloj, D.C.; Papotto, G.; Ferrarotto, L.; Massé, A.; Sessa, G.; Pavone, V. Definitive Treatment of Femoral Shaft Fractures: Comparison between Anterograde Intramedullary Nailing and Monoaxial External Fixation. J. Clin. Med. 2019, 8, 1119. [Google Scholar] [CrossRef]
- Ajmera, A.; Verma, A.; Agrawal, M.; Jain, S.; Mukherjee, A. Outcome of limb reconstruction system in open tibial diaphyseal fractures. Indian J. Orthop. 2015, 49, 429–435. [Google Scholar]
- Megas, P.; Saridis, A.; Kouzelis, A.; Kallivokas, A.; Mylonas, S.; Tyllianakis, M. The treatment of infected nonunion of the tibia following intramedullary nailing by the Ilizarov method. Injury 2010, 41, 294–299. [Google Scholar] [CrossRef]
- Patil, S.; Montgomery, R. Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications. J. Bone Jt. Surg. Br. 2006, 88, 928–932. [Google Scholar] [CrossRef]
- Madhusudhan, T.R.; Ramesh, B.; Manjunath, K.; Shah, H.M.; Sundaresh, D.C.; Krishnappa, N. Outcomes of Ilizarov ring fixation in recalcitrant infected tibial non-unions – a prospective study. J. Trauma Manag. Outcomes 2008, 2, 6. [Google Scholar] [CrossRef]
- Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 2018, 9, 2041731418776819. [Google Scholar] [CrossRef]
- Lindfors, N.; Geurts, J.; Drago, L.; Arts, J.J.; Juutilainen, V.; Hyvönen, P.; Suda, A.J.; Domenico, A.; Artiaco, S.; Alizadeh, C.; et al. Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections—A Multinational Study. Adv. Exp. Med. Biol. 2017, 971, 81–92. [Google Scholar]
- Cierny, G.; Mader, J.T.; Penninck, J.J. A clinical staging system for adult osteomyelitis. Clin. Orthop. 2003, 10, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Gustilo, R.B.; Anderson, J.T. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: Retrospective and prospective analyses. J. Bone Jt. Surg. Am. 1976, 58, 453–458. [Google Scholar] [CrossRef]
- Foot and Ankle Outcomes. Available online: http://eorif.com/AnkleFoot/AnkleFoot%20Outcms.html (accessed on 7 September 2012).
- Paley, D.; Catagni, M.A.; Argnani, F.; Villa, A.; Benedetti, G.B.; Cattaneo, R. Ilizarov treatment of tibial nonunions with bone loss. Clin. Orthop. 1989, 241, 146–165. [Google Scholar] [CrossRef]
- Rodriguez-Merchan, E.C.; Forriol, F. Nonunion: General principles and experimental data. Clin. Orthop. 2004, 419, 4–12. [Google Scholar] [CrossRef]
- Schmitt, S.K. Osteomyelitis. Infect. Dis. Clin. N. Am. 2017, 31, 325–338. [Google Scholar] [CrossRef]
- Baruah, R.K. Ilizarov methodology for infected non union of the Tibia: Classic circular transfixion wire assembly vs. hybrid assembly. Indian J. Orthop. 2007, 41, 198–203. [Google Scholar] [CrossRef]
- Dróżdż, M.; Rak, S.; Bartosz, P.; Białecki, J.; Marczyński, W. Results of the Treatment of Infected Nonunions of the Lower Limbs Using the Ilizarov Method. Ortop. Traumatol. Rehabil. 2017, 19, 111–125. [Google Scholar] [CrossRef]
- Ilizarov, G.A. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin. Orthop. 1989, 239, 263–285. [Google Scholar] [CrossRef]
- Papakostidis, C.; Bhandari, M.; Giannoudis, P.V. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: Effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Jt. J. 2013, 95, 1673–1680. [Google Scholar] [CrossRef]
- Xu, K.; Fu, X.; Li, Y.M.; Wang, C.G.; Li, Z.J. A treatment for large defects of the tibia caused by infected nonunion: Ilizarov method with bone segment extension. Ir. J. Med. Sci. 2014, 183, 423–428. [Google Scholar] [CrossRef]
- Higgins, T.F.; Klatt, J.B.; Beals, T.C. Lower Extremity Assessment Project (LEAP)—The best available evidence on limb-threatening lower extremity trauma. Orthop. Clin. N. Am. 2010, 41, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, R.; Siwach, K.; Devgan, A.; Singh, R.; Wadhwani, J.; Ahmed, N. Outcome of distraction osteogenesis by ring fixator in infected, large bone defects of tibia. J. Clin. Orthop. Trauma 2016, 7 (Suppl. 2), 201–209. [Google Scholar] [CrossRef] [PubMed]
- Maini, L.; Chadha, M.; Vishwanath, J.; Kapoor, S.; Mehtani, A.; Dhaon, B.K. The Ilizarov method in infected nonunion of fractures. Injury 2000, 31, 509–517. [Google Scholar] [CrossRef]
- Chaddha, M.; Gulati, D.; Singh, A.P.; Singh, A.P.; Maini, L. Management of massive posttraumatic bone defects in the lower limb with the Ilizarov technique. Acta Orthop. Belg. 2010, 76, 811–820. [Google Scholar] [PubMed]
- Yin, P.; Zhang, Q.; Mao, Z.; Li, T.; Zhang, L.; Tang, P. The treatment of infected tibial nonunion by bone transport using the Ilizarov external fixator and a systematic review of infected tibial nonunion treated by Ilizarov methods. Acta Orthop. Belg. 2014, 80, 426–435. [Google Scholar] [PubMed]
- Khan, M.S.; Awais, S.M. Evaluation of management of tibial non-union defect with Ilizarov fixator. J. Ayub Med. Coll. Abbottabad 2007, 19, 34–36. [Google Scholar]
- Sadek, A.F.; Laklok, M.A.; Fouly, E.H.; Elshafie, M. Two stage reconstruction versus bone transport in management of resistant infected tibial diaphyseal nonunion with a gap. Arch. Orthop. Trauma Surg. 2016, 136, 1233–1241. [Google Scholar] [CrossRef]
- Romanò, C.L.; Logoluso, N.; Meani, E.; Romanò, D.; De Vecchi, E.; Vassena, C.; Drago, L. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: A retrospective comparative study. Bone Jt. J. 2014, 96, 845–850. [Google Scholar]
- Drago, L.; Romanò, D.; De Vecchi, E.; Vassena, C.; Logoluso, N.; Mattina, R.; Romanò, C.L. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: An in vitro and prospective clinical study. BMC Infect. Dis. 2013, 13, 584. [Google Scholar] [CrossRef]
- Faour, O.; Dimitriou, R.; Cousins, C.A.; Giannoudis, P.V. The use of bone graft substitutes in large cancellous voids: Any specific needs? Injury 2011, 42, S87–S90. [Google Scholar] [CrossRef]
- Tilkeridis, K.; Touzopoulos, P.; Ververidis, A.; Christodoulou, S.; Kazakos, K.; Drosos, G.I. Use of demineralized bone matrix in spinal fusion. World J. Orthop. 2014, 5, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Offner, D.; Wagner, Q.; Keller, L.; Idoux-Gillet, Y.; Benkirane-Jessel, N.; Musset, A.M. Complications d’une autogreffe osseuse, et comparaison avec une allogreffe osseuse ou l’utilisation de BMPs (Bone Morphogenetic Proteins): Une revue systématique de la littérature. Le Journal de l’Orthopédie 2017, 18, 3032–3043. [Google Scholar]
- Okazaki, A.; Koshino, T.; Saito, T.; Takagi, T. Osseous tissue reaction around hydroxyapatite block implanted into proximal metaphysis of tibia of rat with collagen-induced arthritis. Biomaterials 2000, 21, 483–487. [Google Scholar] [CrossRef]
- Koshino, T.; Murase, T.; Takagi, T.; Saito, T. New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 2001, 22, 1579–1582. [Google Scholar] [CrossRef]
- Xie, J.; Baumann, M.J.; McCabe, L.R. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J. Biomed. Mater. Res. A 2004, 71, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Habibovic, P. Calcium phosphates and angiogenesis: Implications and advances for bone regeneration. Trends Biotechnol. 2016, 34, 983–992. [Google Scholar] [CrossRef]
- Dehoux, E.; Madi, K.; Fourati, E.; Mensa, C.; Segal, P. High tibial open-wedge osteotomy using a tricalcium phosphate substitute: 70 cases with 18 months mean follow-up. Revue de Chirurgie Orthopedique et Reparatrice de l’appareil Moteur 2005, 91, 143–148. [Google Scholar] [CrossRef]
- Gaasbeck, R.D.A.; Toonen, H.G.; van Heerwaarden, R.J.; Buma, P. Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 2005, 26, 6713–6719. [Google Scholar] [CrossRef]
- Gouin, F.; Yaouanc, F.; Waast, D.; Melchior, B.; Delecrin, J.; Passuti, N. Open wedge high tibial osteotomies: Calcium-phosphate ceramic spacer versus autologous bone graft. Orthop. Traumatol. Surg. Res. 2010, 96, 637–645. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive glass in tissue engineering. Acta Biomater. 2011, 7, 2355–2373. [Google Scholar] [CrossRef]
- McAndrew, J.; Efrimescu, C.; Sheean, E.; Niall, D. Through the looking glass; bioactive glass S53P4 (Bonalive®) in the treatment of chronic osteomyelitis. Ir. J. Med. Sci. 2013, 182, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; De Vecchi, E.; Bortolin, M.; Toscano, M.; Mattina, R.; Romanò, C.L. Antimicrobial activity and resistance selection of different bioglass S53P4 formulations against multidrug resistant strains. Future Microbiol. 2015, 10, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Moimas, L.; Biasotto, M.; Di, L.R.; Olivo, A.; Schmid, C. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomater. 2006, 2, 191–199. [Google Scholar] [CrossRef] [PubMed]
Bone Results | Patients | |
---|---|---|
Excellent | Union, no infection, deformity <7°, limb-length discrepancy <2.5 cm | 10 (38.5%) |
Good | Union + any two of the following: absence of infection, deformity <7°, limb-length discrepancy of <2.5 cm | 12 (46.1%) |
Fair | Union + only one of the following: absence of infection, deformity <7°, limb-length discrepancy of <2.5 cm | 4 (15.4%) |
Poor | Non-union/re-fracture/union + infection + deformity >7° + limb-length discrepancy >2.5 cm | 0 |
Functional Results | Patients | |
---|---|---|
Excellent | Active, no limp, minimum stiffness (loss of <15° knee extension/<15° ankle dorsiflexion), no reflex sympathetic dystrophy, insignificant pain | 16 (61.5%) |
Good | Active with one or two of the following: Limp, stiffness, reflex sympathetic dystrophy, significant pain | 9 (34.6%) |
Fair | Active with at least three of the following: Limp, stiffness, reflex sympathetic dystrophy, significant pain | 1 (3.9%) |
Poor | Inactive (unemployment or inability to return to daily activities because of injury) | 0 |
Failures | Amputation | 0 |
Infected Nonunion Site | AOFAS | ASAMI Bone | ASAMI Functional | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | G | F | P | p Value | E | G | F | P | p Value | ||
Proximal | 84.9 ± 5.8 | 4 | 3 | 2 | 0 | p = 0.78 | 5 | 3 | 0 | 0 | p = 0.50 |
Intermediate | 86.8 ± 6.1 | 4 | 4 | 1 | 0 | 7 | 2 | 0 | 0 | ||
Distal | 84.8 ± 6.4 | 2 | 5 | 1 | 0 | 4 | 4 | 1 | 0 | ||
Pro vs. Int | p = 0.63 | ||||||||||
Int vs. Dis | p = 0.30 | ||||||||||
Pro vs. Dis | p = 0.74 |
Cierny-Mader Classification | AOFAS | ASAMI Bone | ASAMI Functional | |||||
---|---|---|---|---|---|---|---|---|
E | G | F | P | E | G | F | ||
A | 84.7 ± 6.0 | 6 | 7 | 3 | 0 | 8 | 7 | 1 |
B | 86.8 ± 6.1 | 4 | 5 | 1 | 0 | 8 | 2 | 0 |
p value | p = 0.40 | p = 0.83 | p = 0.28 |
Bioactive Glass Usage | AOFAS | ASAMI Bone | ASAMI Functional | |||||
---|---|---|---|---|---|---|---|---|
E | G | F | P | E | G | F | ||
No | 85.8 ± 5.4 | 12 | 6 | 1 | 0 | 7 | 9 | 3 |
Yes | 85.1 ± 7.1 | 4 | 3 | 0 | 0 | 3 | 3 | 1 |
p value | p = 0.79 | p = 0.90 | p = 0.99 |
Criteria | Average Score (Range) |
---|---|
Pain | 37.5 ± 2.5 (31–40) |
Function | 38.4 ± 3.8 (31–45) |
Alignment | 9.6 ± 0.6 (8–10) |
Overall AOFAS score | 85.5 ± 6.2 (70–95) |
Authors | Patients | Frame | Excellent (%) | Good (%) | Fair (%) | Poor (%) |
---|---|---|---|---|---|---|
Present study | 26 | Ilizarov | 38.5 | 46.1 | 3.9 | 0 |
Rohilla et al. [22] | 35 | Ilizarov | 60 | 34.3 | 0 | 5.7 |
Maini et al. [23] | 30 | Ilizarov | 70 | 10 | 0 | 20 |
Chaddha et al. [24] | 25 | Ilizarov | 52 | 4 | 0 | 44 |
Yin et al. [25] | 66 | Ilizarov | 67 | 23 | 7 | 3 |
Patil et al. [7] | 78 | Ilizarov | 41 | 34 | 10 | 15 |
Farmanullah et al. [26] | 58 | Ilizarov | 57 | 21 | 14 | 8 |
Authors | Patients | Frame | Excellent (%) | Good (%) | Fair (%) | Poor (%) | Failures |
---|---|---|---|---|---|---|---|
Present study | 26 | Ilizarov | 61.5 | 34.6 | 3.9 | 0 | 0 |
Rohilla et al. [22] | 35 | Ilizarov | 45.7 | 48.5 | 2.9 | 0 | 2.9 |
Maini et al. [23] | 30 | Ilizarov | 27 | 40 | 10 | 23 | 0 |
Chaddha et al. [24] | 25 | Ilizarov | 24 | 36 | 16 | 36 | 0 |
Yin et al. [25] | 66 | Ilizarov | 40 | 43 | 17 | 0 | 0 |
Patil et al. [7] | 78 | Ilizarov | 41 | 41 | 6 | 6 | 6 |
Farmanullah et al. [26] | 58 | Ilizarov | 57 | 31 | 7 | 5 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, G.; Vescio, A.; Aloj, D.C.; Costa, D.; Papotto, G.; Gurrieri, L.; Sessa, G.; Pavone, V. Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series. J. Clin. Med. 2020, 9, 1352. https://doi.org/10.3390/jcm9051352
Testa G, Vescio A, Aloj DC, Costa D, Papotto G, Gurrieri L, Sessa G, Pavone V. Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series. Journal of Clinical Medicine. 2020; 9(5):1352. https://doi.org/10.3390/jcm9051352
Chicago/Turabian StyleTesta, Gianluca, Andrea Vescio, Domenico Costantino Aloj, Danilo Costa, Giacomo Papotto, Luca Gurrieri, Giuseppe Sessa, and Vito Pavone. 2020. "Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series" Journal of Clinical Medicine 9, no. 5: 1352. https://doi.org/10.3390/jcm9051352
APA StyleTesta, G., Vescio, A., Aloj, D. C., Costa, D., Papotto, G., Gurrieri, L., Sessa, G., & Pavone, V. (2020). Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series. Journal of Clinical Medicine, 9(5), 1352. https://doi.org/10.3390/jcm9051352