Glycoprotein Profile Assessed by 1H-NMR as a Global Inflammation Marker in Patients with HIV Infection. A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Glycoprotein Analysis by 1H-NMR
2.4. Statistical Analysis
3. Results
3.1. Baseline Clinical and Analytical Parameter Data
3.2. Associations of Glycoproteins with Analytical Parameters at the Basal Timepoint
3.3. Evolution of Glycoproteins and Prognosis in the Prospective Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Massanella, M.; Negredo, E.; Clotet, B.; Blanco, J. Immunodiscordant responses to HAART—Mechanisms and consequences. Expert Rev. Clin. Immunol. 2013, 9, 1135–1149. [Google Scholar] [CrossRef]
- Hatano, H. Immune activation and HIV persistence: Considerations for novel therapeutic interventions. Curr. Opin. HIV AIDS 2013, 8, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Sokoya, T.; Steel, H.C.; Nieuwoudt, M.; Rossouw, T.M. HIV as a Cause of Immune Activation and Immunosenescence. Mediat. Inflamm. 2017, 2017, 6825493. [Google Scholar] [CrossRef] [PubMed]
- Leeansyah, E.; Malone, D.F.G.; Anthony, D.D.; Sandberg, J.K. Soluble biomarkers of HIV transmission, disease progression and comorbidities. Curr. Opin. HIV AIDS 2013, 8, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Kuller, L.H.; Tracy, R.; Belloso, W.; De Wit, S.; Drummond, F.; Lane, H.C.; Ledergerber, B.; Lundgren, J.; Neuhaus, J.; Nixon, D.; et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008, 5, e203. [Google Scholar] [CrossRef]
- Nixon, D.E.; Landay, A.L. Biomarkers of immune dysfunction in HIV. Curr. Opin. HIV AIDS 2010, 5, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group, T.S. for M. of A.T. (SMART) S. CD4+ Count–Guided Interruption of Antiretroviral Treatment. N. Engl. J. Med. 2006, 355, 2283–2296. [Google Scholar] [CrossRef] [Green Version]
- Grund, B.; Baker, J.V.; Deeks, S.G.; Wolfson, J.; Wentworth, D.; Cozzi-Lepri, A.; Cohen, C.J.; Phillips, A.; Lundgren, J.D.; Neaton, J.D.; et al. Relevance of Interleukin-6 and D-Dimer for Serious Non-AIDS Morbidity and Death among HIV-Positive Adults on Suppressive Antiretroviral Therapy. PLoS ONE 2016, 11, e0155100. [Google Scholar] [CrossRef]
- Hart, B.B.; Nordell, A.D.; Okulicz, J.F.; Palfreeman, A.; Horban, A.; Kedem, E.; Neuhaus, J.; Jacobs, D.R.; Duprez, D.A.; Neaton, J.D. Inflammation-Related Morbidity and Mortality Among HIV-Positive Adults: How Extensive Is It? J. Acquir. Immune Defic. Syndr. 2018, 77, 1–7. [Google Scholar] [CrossRef]
- Nordell, A.D.; McKenna, M.; Borges, Á.H.; Duprez, D.; Neuhaus, J.; Neaton, J.D.; INSIGHT SMART, ESPRIT Study Groups. SILCAAT Scientific Committee Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J. Am. Heart Assoc. 2014, 3, e000844. [Google Scholar] [CrossRef] [Green Version]
- Triant, V.A.; Meigs, J.B.; Grinspoon, S.K. Association of C-Reactive Protein and HIV Infection with Acute Myocardial Infarction. J Acquir. Immune Defic. Syndr. 2009, 1, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duprez, D.A.; Neuhaus, J.; Kuller, L.H.; Tracy, R.; Belloso, W.; De Wit, S.; Drummond, F.; Lane, H.C.; Ledergerber, B.; Lundgren, J.; et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS ONE 2012, 7, e44454. [Google Scholar] [CrossRef] [PubMed]
- Borges, Á.H.; O’Connor, J.L.; Phillips, A.N.; Neaton, J.D.; Grund, B.; Neuhaus, J.; Vjecha, M.J.; Calmy, A.; Koelsch, K.K.; Lundgren, J.D.; et al. Interleukin 6 Is a Stronger Predictor of Clinical Events than High-Sensitivity C-Reactive Protein or D-Dimer During HIV Infection. J. Infect. Dis. 2016, 214, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandler, N.G.; Wand, H.; Roque, A.; Law, M.; Nason, M.C.; Nixon, D.E.; Pedersen, C.; Ruxrungtham, K.; Lewin, S.R.; Emery, S.; et al. Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection. J. Infect. Dis. 2011, 203, 780–790. [Google Scholar] [CrossRef] [Green Version]
- Byakwaga, H.; Boum, Y.; Huang, Y.; Muzoora, C.; Kembabazi, A.; Weiser, S.D.; Bennett, J.; Cao, H.; Haberer, J.E.; Deeks, S.G.; et al. The kynurenine pathway of tryptophan catabolism, CD4+ T-cell recovery, and mortality among HIV-infected Ugandans initiating antiretroviral therapy. J. Infect. Dis. 2014, 210, 383–391. [Google Scholar] [CrossRef]
- Klatt, N.R.; Funderburg, N.T.; Brenchley, J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol. 2013, 21, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Funderburg, N.T.; Mayne, E.; Sieg, S.F.; Asaad, R.; Jiang, W.; Kalinowska, M.; Luciano, A.A.; Stevens, W.; Rodriguez, B.; Brenchley, J.M.; et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: Relationship to in vivo coagulation and immune activation. Blood J. Am. Soc. Hematol. 2010, 115, 161–167. [Google Scholar] [CrossRef]
- Browning, L.M.; Krebs, J.D.; Jebb, S.A. Discrimination ratio analysis of inflammatory markers: Implications for the study of inflammation in chronic disease. Metabolism 2004, 53, 899–903. [Google Scholar] [CrossRef]
- Fuertes-Martín, R.; Correig, X.; Vallvé, J.-C.; Amigó, N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J. Clin. Med. 2020, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Marth, J.D. Glycosylation in Cellular Mechanisms of Health and Disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kooyk, Y.; Rabinovich, G.A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 2008, 9, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Gruys, E.; Toussaint, M.J.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gornik, O.; Lauc, G. Glycosylation of Serum Proteins in Inflammatory Diseases. Dis. Markers 2008, 25, 267–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knobel, H.; Escobar, I.; Polo, R.; Ortega, L.; Martín-Conde, M.T.; Casado, J.L.; Codina, C.; Fernández, J.; Galindo, M.J.; Ibarra, O.; et al. Recommendations from GESIDA/SEFH/PNS to improve adherence to antiviral treatment (2004). Enferm. Infecc. Microbiol. Clin. 2005, 23, 221–231. [Google Scholar] [CrossRef]
- Fuertes-Martín, R.; Taverner, D.; Vallvé, J.-C.; Paredes, S.; Masana, L.; Correig Blanchar, X.; Amigó Grau, N. Characterization of 1 H NMR Plasma Glycoproteins as a New Strategy To Identify Inflammatory Patterns in Rheumatoid Arthritis. J. Proteome Res. 2018, 17, 3730–3739. [Google Scholar] [CrossRef]
- Fuertes-Martín, R.; Moncayo, S.; Insenser, M.; Martínez-García, M.Á.; Luque-Ramírez, M.; Grau, N.A.; Blanchar, X.C.; Escobar-Morreale, H.F. Glycoprotein A and B Height-to-Width Ratios as Obesity-Independent Novel Biomarkers of Low-Grade Chronic Inflammation in Women with Polycystic Ovary Syndrome (PCOS). J. Proteome Res. 2019, 18, 4038–4045. [Google Scholar] [CrossRef]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef] [Green Version]
- Danesh, J.; Wheeler, J.G.; Hirschfield, G.M.; Eda, S.; Eiriksdottir, G.; Rumley, A.; Lowe, G.D.O.; Pepys, M.B.; Gudnason, V. C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. N. Engl. J. Med. 2004, 350, 1387–1397. [Google Scholar] [CrossRef]
- Hardikar, S.; Song, X.; Kratz, M.; Anderson, G.L.; Blount, P.L.; Reid, B.J.; Vaughan, T.L.; White, E. Intraindividual variability over time in plasma biomarkers of inflammation and effects of long-term storage. Cancer Causes Control 2014, 25, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Duprez, D.A.; Otvos, J.; Sanchez, O.A.; Mackey, R.H.; Tracy, R.; Jacobs, D.R. Comparison of the Predictive Value of GlycµA and Other Biomarkers of Inflammation for Total Death, Incident Cardiovascular Events, Noncardiovascular and Noncancer Inflammatory-Related Events, and Total Cancer Events. Clin. Chem. 2016, 62, 1020–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Esko, T.; Tammesoo, M.-L.; Mägi, R.; et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef] [PubMed]
- Akinkuolie, A.O.; Buring, J.E.; Ridker, P.M.; Mora, S. A novel protein glycan biomarker and future cardiovascular disease events. J. Am. Heart Assoc. 2014, 3, e001221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelesidis, T.; Tran, T.T.T.; Stein, J.H.; Brown, T.T.; Moser, C.; Ribaudo, H.J.; Dube, M.P.; Murphy, R.; Yang, O.O.; Currier, J.S.; et al. Changes in Inflammation and Immune Activation with Atazanavir-, Raltegravir-, Darunavir-Based Initial Antiviral Therapy: ACTG 5260s. Clin. Infect. Dis. 2015, 61, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibuakuu, M.; Fashanu, O.E.; Zhao, D.; Otvos, J.D.; Brown, T.T.; Haberlen, S.A.; Guallar, E.; Budoff, M.J.; Palella, F.J.; Martinson, J.J.; et al. GlycA, a novel inflammatory marker, is associated with subclinical coronary disease. AIDS 2019, 33, 547–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Gallego, E.; Gómez, J.; Pacheco, Y.M.; Peraire, J.; Viladés, C.; Beltrán-Debón, R.; Mallol, R.; López-Dupla, M.; Veloso, S.; Alba, V.; et al. A baseline metabolomic signature is associated with immunological CD4+ T-cell recovery after 36 months of antiretroviral therapy in HIV-infected patients. AIDS 2018, 32, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Robbins, G.K.; Spritzler, J.G.; Chan, E.S.; Asmuth, D.M.; Gandhi, R.T.; Rodriguez, B.A.; Skowron, G.; Skolnik, P.R.; Shafer, R.W.; Pollard, R.B. Incomplete Reconstitution of T Cell Subsets on Combination Antiretroviral Therapy in the AIDS Clinical Trials Group Protocol 384. Clin. Infect. Dis. 2009, 48, 350–361. [Google Scholar] [CrossRef]
- Pacheco, Y.M.; Jarrín, I.; Del Amo, J.; Moreno, S.; Iribarren, J.A.; Viciana, P.; Parra, J.; Gomez-Sirvent, J.L.; Gutierrez, F.; Blanco, J.R.; et al. Risk factors, CD4 long-term evolution and mortality of HIV-infected patients who persistently maintain low CD4 counts, despite virological response to HAART. Curr. HIV Res. 2009, 7, 612–619. [Google Scholar] [CrossRef]
- Darraj, M.; Shafer, L.A.; Chan, S.; Kasper, K.; Keynan, Y. Rapid CD4 decline prior to antiretroviral therapy predicts subsequent failure to reconstitute despite HIV viral suppression. J. Infect. Public Health 2018, 11, 265–269. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 2014, 28, 570–583. [Google Scholar] [CrossRef]
All, n = 221 | <200 CD4+ T-Cell, n = 108 | >200 CD4+ T-Cell, n = 113 | p Value | |
---|---|---|---|---|
Clinical characteristics | ||||
Age (y) | 39 (33–45) | 40 (34–48) | 37 (30–43) | 0.009 |
Gender (%, women) | 39 (17.6) | 20 (18.5) | 19 (16.8) | 0.890 |
Type 2 Diabetes (%, yes) | 16 (7.3) | 6 (5.6) | 10 (8.9) | 0.439 |
Hepatitis (%, yes) | 103 (47.5) | 52 (49.1) | 51 (45.9) | 0.684 |
Biochemical parameters | ||||
Cholesterol (mmol/L) | 4.2 ± 1 | 4.7 ± 1.2 | 4.3 ± 0.8 | 0.422 |
Triglycerides (mmol/L) | 1.3 (0.9–1.9) | 1.39 (1–2.0) | 1.2 (0.9–1.8) | 0.113 |
LDL-C (mmol/L) | 2.5 ± 0.9 | 2.5 ± 1.1 | 2.6 ± 0.6 | 0.788 |
HDL-C (mmol/L) | 0.9 (0.8–1.1) | 0.9 (0.7–1.1) | 1(0.8–1.1) | 0.841 |
AST (µkat/L) | 0.7 (0.5–0.9) | 0.7 (0.6–1) | 0.7 (0.5–1) | 0.158 |
ALT (µkat/L) | 0.6 (0.5–1) | 0.6 (0.5–1.1) | 0.6 (0.5–0.9) | 0.491 |
GGT (µkat/L) | 0.8 (0.4–1.5) | 1 (0.6–2.1) | 0.5 (0.4–1.0) | <0.001 |
ALP (µkat/L) | 0.7 (0.6–0.9) | 0.8 (0.6–1) | 0.6 (0.5–0.8) | <0.001 |
Creatinine (µmol/L) | 91 (82–100) | 90 (79–97) | 92 (86–103.5) | 0.090 |
GF (mL/min/1.73 m2) | 87 (77–101) | 87 (79–105) | 88 (77–100) | 0.717 |
CD4+ T-cell (cells/µL) | 223 (103–331) | 92 (34–177) | 328 (272–441) | <0.001 |
VL (log copies/mL) | 4.98 (4.52–5.49) | 5.24 (4.68–5.56) | 4.77 (4.32–5.13) | <0.001 |
HsCRP * (mg/L) | 1.6(0.70–9.00) | 2.1 (0.8–10) | 1.3 (0.4–5.5) | 0.036 |
Glycoproteins | ||||
Glyc B (µmol/L) | 489.1 (431.4–545.7) | 521 (440.3–610.3) | 468.6 (417.9–507.0) | <0.001 |
Glyc A (µmol/L) | 972.5 (890.1–1120.0) | 1040 (917.9–1199.1) | 950.4 (845.5–1050.9) | <0.001 |
H/W Glyc B | 6.2 (5.5–7) | 6.6 (5.6–7.8) | 5.9 (5.3–6.9) | <0.001 |
H/W Glyc A | 21.9 (19.9–25.77) | 24.3 (20.6–29.33) | 21.3 (19.44–23.22) | <0.001 |
Treatment during follow-up | ||||
PI 48 weeks (%) | 115 (52.0) | 59 (54.6) | 56 (49.6) | 0.501 |
TDF 48 weeks (%) | 83 (37.6) | 46 (42.6) | 37 (32.7) | 0.165 |
PI 144 weeks (%) | 95 (43.0) | 51 (47.2) | 44 (38.9) | 0.224 |
TDF 144 weeks (%) | 81 (36.7) | 47 (43.5) | 34 (30.1) | 0.050 |
GlycB | GlycA | H/W GlycB | H/W GlycA | |
---|---|---|---|---|
Age | 0.090 | 0.198 ** | 0.084 | 0.128 |
Cholesterol | −0.019 | 0.134 | −0.018 | 0.017 |
Triglycerides | 0.221 ** | 0.353 ** | 0.221 ** | 0.236 ** |
LDL-C | 0.024 | 0.165 | 0.026 | 0.063 |
HDL-C | −0.259 ** | −0.226 ** | −0.263 ** | −0.251 ** |
GOT | −0.103 | −0.095 | −0.093 | −0.048 |
GPT | −0.132 | −0.067 | −0.111 | −0.093 |
GGT | 0.063 | 0.057 | 0.072 | 0.142 |
FA | 0.180 * | 0.116 | 0.175 * | 0.210 ** |
Creatinine | −0.050 | −0.035 | −0.056 | −0.082 |
GF | 0.034 | -0.032 | 0.034 | 0.007 |
CD4+ T-cell | −0.337 ** | −0.297 ** | −0.350 ** | −0.381 ** |
VL | 0.098 | 0.092 | 0.120 | 0.221 ** |
Hs-CRP * | 0.456 ** | 0.454 ** | 0.458 ** | 0.512 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malo, A.-I.; Rull, A.; Girona, J.; Domingo, P.; Fuertes-Martín, R.; Amigó, N.; Rodríguez-Borjabad, C.; Martínez-Micaelo, N.; Leal, M.; Peraire, J.; et al. Glycoprotein Profile Assessed by 1H-NMR as a Global Inflammation Marker in Patients with HIV Infection. A Prospective Study. J. Clin. Med. 2020, 9, 1344. https://doi.org/10.3390/jcm9051344
Malo A-I, Rull A, Girona J, Domingo P, Fuertes-Martín R, Amigó N, Rodríguez-Borjabad C, Martínez-Micaelo N, Leal M, Peraire J, et al. Glycoprotein Profile Assessed by 1H-NMR as a Global Inflammation Marker in Patients with HIV Infection. A Prospective Study. Journal of Clinical Medicine. 2020; 9(5):1344. https://doi.org/10.3390/jcm9051344
Chicago/Turabian StyleMalo, Ana-Irene, Anna Rull, Josefa Girona, Pere Domingo, Rocío Fuertes-Martín, Núria Amigó, Cèlia Rodríguez-Borjabad, Neus Martínez-Micaelo, Manuel Leal, Joaquim Peraire, and et al. 2020. "Glycoprotein Profile Assessed by 1H-NMR as a Global Inflammation Marker in Patients with HIV Infection. A Prospective Study" Journal of Clinical Medicine 9, no. 5: 1344. https://doi.org/10.3390/jcm9051344
APA StyleMalo, A.-I., Rull, A., Girona, J., Domingo, P., Fuertes-Martín, R., Amigó, N., Rodríguez-Borjabad, C., Martínez-Micaelo, N., Leal, M., Peraire, J., Correig, X., Vidal, F., & Masana, L. (2020). Glycoprotein Profile Assessed by 1H-NMR as a Global Inflammation Marker in Patients with HIV Infection. A Prospective Study. Journal of Clinical Medicine, 9(5), 1344. https://doi.org/10.3390/jcm9051344