Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study
- Supplementary File 1:
ZIP-Document (ZIP, 265 KiB)
Agibetov, A.; Seirer, B.; Dachs, T.-M.; Koschutnik, M.; Dalos, D.; Rettl, R.; Duca, F.; Schrutka, L.; Agis, H.; Kain, R.; Auer-Grumbach, M.; Binder, C.; Mascherbauer, J.; Hengstenberg, C.; Samwald, M.; Dorffner, G.; Bonderman, D. Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study. J. Clin. Med. 2020, 9, 1334. https://doi.org/10.3390/jcm9051334
Agibetov A, Seirer B, Dachs T-M, Koschutnik M, Dalos D, Rettl R, Duca F, Schrutka L, Agis H, Kain R, Auer-Grumbach M, Binder C, Mascherbauer J, Hengstenberg C, Samwald M, Dorffner G, Bonderman D. Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study. Journal of Clinical Medicine. 2020; 9(5):1334. https://doi.org/10.3390/jcm9051334
Chicago/Turabian StyleAgibetov, Asan; Seirer, Benjamin; Dachs, Theresa-Marie; Koschutnik, Matthias; Dalos, Daniel; Rettl, René; Duca, Franz; Schrutka, Lore; Agis, Hermine; Kain, Renate; Auer-Grumbach, Michela; Binder, Christina; Mascherbauer, Julia; Hengstenberg, Christian; Samwald, Matthias; Dorffner, Georg; Bonderman, Diana. 2020. "Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study" J. Clin. Med. 9, no. 5: 1334. https://doi.org/10.3390/jcm9051334