Implications of Hemostasis Disorders in Patients with Critical Limb Ischemia—An In-Depth Comparison of Selected Factors
Abstract
1. Introduction
2. Material and Methods
2.1. Research Subjects
2.2. Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stehouwer, C.D.; Clement, D.; Davidson, C.; Diehm, C.; Elte, J.W.; Lambert, M.; Sereni, D. Peripheral arterial disease: A growing problem for the internist. Eur. J. Intern. Med. 2009, 20, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, T.; Rooke, T.W.; Kullo, I.J. Arterial dysfunction and functional performance in patients with peripheral artery disease: A review. Vasc. Med. 2011, 16, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.R.; Aboyans, V.; Fowkes, F.J.I.; McDermott, M.M.; Sampson, U.K.A.; Criqui, M.H. Peripheral artery disease: Epidemiology and global perspectives. Nat. Rev. Cardiol. 2016, 14, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, N.M.; Creager, M.A. Pathophysiology of Intermittent Claudication in Peripheral Artery Disease. Circ. J. 2017, 81, 281–289. [Google Scholar] [CrossRef]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.R. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur. J. Vasc. Endovasc. Surg. 2007, 33, 1–75. [Google Scholar] [CrossRef]
- Simon, F.; Oberhuber, A.; Floros, N.; Düppers, P.; Schelzig, H.; Duran, M. Pathophysiology of chronic limb ischemia. Gefässchirurgie 2018, 23, 13–18. [Google Scholar] [CrossRef]
- The European Stroke Organisation (ESO); Tendera, M.; Aboyans, V.; Bartelink, M.-L.; Baumgartner, I.; Clément, D.; Collet, J.-P.; Cremonesi, A.; De Carlo, M.; Erbel, R.; et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries * The Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Hear. J. 2011, 32, 2851–2906. [Google Scholar]
- Schaper, W.; Scholz, D. Factors Regulating Arteriogenesis. Arter. Thromb. Vasc. Boil. 2003, 23, 1143–1151. [Google Scholar] [CrossRef]
- Fabiani, I.; Calogero, E.; Pugliese, N.R.; Di Stefano, R.; Nicastro, I.; Buttitta, F.; Nuti, M.; Violo, C.; Giannini, D.; Morgantini, A.; et al. Critical Limb Ischemia: A Practical Up-To-Date Review. Angiology 2017, 69, 465–474. [Google Scholar] [CrossRef]
- Criqui, M.H.; Langer, R.D.; Fronek, A.; Feigelson, H.S.; Klauber, M.R.; McCann, T.J.; Browner, D. Mortality over a period of 10 years in patients with peripheral arterial disease. N. Engl. J. Med. 1992, 326, 381–386. [Google Scholar] [CrossRef]
- Dieter, R.S.; Chu, W.W.; Pacanowski, J.P.; McBride, P.E.; Tanke, T.E. The significance of lower extremity peripheral arterial disease. Clin. Cardiol. 2006, 25, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Simon, F.; Oberhuber, A.; Floros, N.; Busch, A.; Wagenhäuser, M.U.; Schelzig, H.; Duran, M. Acute Limb Ischemia – Much More Than Just a Lack of Oxygen. Int. J. Mol. Sci. 2018, 19, 374. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.K.K.; Thiagarajan, M.P. Role of endothelium in thrombosis and hemostasis. Annu. Rev. Med. 1996, 47, 315–331. [Google Scholar] [PubMed]
- Chu, A.J. Tissue factor, blood coagulation, and beyond: An overview. Int. J. Inflamm. 2011, 2011, 367284. [Google Scholar] [CrossRef] [PubMed]
- Broze, G.J., Jr.; Girard, T.J. Tissue factor pathway inhibitor: Structure-function. Front. Biosci. 2012, 17, 262–280. [Google Scholar] [CrossRef] [PubMed]
- Ten Cate, H.; Hemker, H.C. Thrombin Generation and Atherothrombosis: What Does the Evidence Indicate? J. Am. Hear. Assoc. 2016, 5. [Google Scholar] [CrossRef]
- Luengo-Gil, G.; Calvo, M.I.; Martin-Villar, E.; Aguila, S.; Bohdan, N.; Anton, A.I.; Espín, S.; De La Peña, F.A.; Vicente, V.; Corral, J.; et al. Antithrombin controls tumor migration, invasion and angiogenesis by inhibition of enteropeptidase. Sci. Rep. 2016, 6, 27544. [Google Scholar] [CrossRef]
- Mobarrez, F.; He, S.; Bröijersen, A.; Wiklund, B.; Antovic, A.; Antovic, J.; Egberg, N.; Jörneskog, G.; Wallén, H. Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb. Haemost. 2011, 106, 344–352. [Google Scholar] [CrossRef]
- Rao, A.K.; Vaidyula, V.R.; Bagga, S.; Jalagadugula, G.; Gaughan, J.; Wilhite, D.B.; Comerota, A.J. Effect of antiplatelet agents clopidogrel, aspirin, and cilostazol on circulating tissue factor procoagulant activity in patients with peripheral arterial disease. Thromb. Haemost. 2006, 96, 738–743. [Google Scholar]
- Blann, A.D.; Amiral, J.; Mccollum, C.N.; Lip, G.Y. Differences in free and total tissue factor pathway inhibitor, and tissue factor in peripheral artery disease compared to healthy controls. Atherosclerosis 2000, 152, 29–34. [Google Scholar] [CrossRef]
- Makin, A.J.; Chung, N.A.; Silverman, S.H.; Lip, G.Y. Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: A link between angiogenesis and thrombogenesis? Clin. Sci. 2003, 104, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Kotschy, D.; Kotschy, M.; Socha, P.; Masłowski, L.; Kwapisz, J.; Żuk, N.; Dubis, J.; Karczewski, M.; Witkiewicz, W. Tissue factor and other hemostatic parameters in patients with advanced peripheral artery disease after endovascular revascularization - search for hemostatic factors which indicate restenosis. Adv. Clin. Exp. Med. 2015, 24, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef]
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.L.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 9, 830–834. [Google Scholar] [CrossRef]
- Sima, A.V.; Stancu, C.S.; Simionescu, M. Vascular endothelium in atherosclerosis. Cell and Tissue Research 2008, 335, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Szeremeta, M.; Kemona-Chetnik, I.; Dymicka-Piekarska, V.; Matowicka-Karna, J.; Jakubowska, I.; Dudar, A.; Kemona, H. The relations between platelet count, mean platelet volume and HbA1C in patients with type 2 diabetes. Przeglad Lek. 2009, 66, 1049–1051. [Google Scholar]
- Tan, K.T.; Tayebjee, M.H.; Lynd, C.; Blann, A.D.; Lip, G.Y.H. Platelet microparticles and soluble P selectin in peripheral artery disease: Relationship to extent of disease and platelet activation markers. Ann. Med. 2005, 37, 61–66. [Google Scholar] [CrossRef]
- Robless, P.; Okonko, D.; Lintott, P.; Mansfield, A.; Mikhailidis, D.; Stansby, G. Increased platelet aggregation and activation in peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 16–22. [Google Scholar] [CrossRef]
- Smith, T.; Dhunnoo, G.; Mohan, I.; Charlton-Menys, V. A pilot study showing an association between platelet hyperactivity and the severity of peripheral arterial disease. Platelets 2007, 18, 245–248. [Google Scholar] [CrossRef]
- Tan, K.T.; Tayebjee, M.H.; Lim, H.S.; Lip, G.Y.H. Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet microparticle levels. Diabet. Med. 2005, 22, 1657–1662. [Google Scholar] [CrossRef]
- Psuja, P.; Zozulińska, M.; Lewandowski, K.; Turowiecka, Z.; Pioruńska-Stolzmann, M.; Majewski, W.; Patelski, J.; Zawilska, K. Function of platelets in patients with occlusive atherosclerotic arterial disease of the lower extremities. Pol. Arch. Intern. Med. 1994, 91, 349–355. [Google Scholar]
- Barradas, M.A.; Stansby, G.; Hamilton, G.; Mikhailidis, D.P. Diminished platelet yield and enhanced platelet aggregability in platelet-rich plasma of peripheral vascular disease patients. Int. Angiol. 1994, 13, 202–207. [Google Scholar]
- Tsakiris, D.A.; Tschöpl, M.; Wolf, F.; Labs, K.H.; Jäger, K.A.; Marbet, G.A. Platelets and cytokines in concert with endothelial activation in patients with peripheral arterial occlusive disease. Blood Coagul. Fibrinolysis 2000, 11, 165–173. [Google Scholar] [CrossRef]
- McBane, R.D.; Karnicki, K.; Miller, R.S.; Owen, W.G. The impact of peripheral arterial disease on circulating platelets. Thromb. Res. 2004, 113, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Radziwon, P.; Bielawiec, M.; Kłoczko, J. Tissue factor pathway inhibitor (TFPI) in patient with occlusive arterial diseases in consideration with risk factors and conservative treatment of the disease. Acta Angiol. 2001, 7, 43–54. [Google Scholar]
- Kato, H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: Basic and clinical aspects. Arter. Thromb. Vasc. Biol. 2002, 22, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Strano, A.; Hoppensteadt, D.; Walenga, J.M.; Fareed, J.; Sabbá, C.; Berardi, E.; Allegra, C.; Carlizza, A.; Binaghi, F.; Fronteddu, F.; et al. Plasma levels of the molecular markers of coagulation and fibrinolysis in patients with peripheral arterial disease. Semin. Thromb. Hemost. 1996, 22, 35–40. [Google Scholar]
- Hering, J.; Amann, B.; Angelkort, B.; Rottmann, M. Thrombin-antithrombin complex and the prothrombin fragment in arterial and venous blood of patients with peripheral arterial disease. Vasa 2003, 32, 193–197. [Google Scholar] [CrossRef]
- Cassar, K.; Bachoo, P.; Brittenden, J. The role of platelets in peripheral vascular disease. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 6–15. [Google Scholar] [CrossRef][Green Version]
- Pärsson, H.; Holmberg, A.; Siegbahn, A.; Bergqvist, D. Activation of coagulation and fibronolytic systems in patients with CLI is not normalized after surgical revascularisation. Eur. J. Vasc. Endovasc. Surg. 2004, 27, 186–192. [Google Scholar] [CrossRef][Green Version]
- Chudý, P.; Chuda, D.; Ivanková, J.; Šinák, I.; Talapková, R.; Stasko, J.; Kubisz, P. Therapeutic angiogenesis improves fibrinolytic imbalance in patients with critical limb ischemia. Blood Coagul. Fibrinolysis 2014, 25, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Bae, D.S.; Kim, Y.H.; Shin, K.J. Aging, Hypercoagulability, and Leg Necrosis in Critical Limb Ischemia. Ann. Vasc. Surg. 2015, 29, 227–236. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Value |
---|---|---|
Sex (females/males) | n (%)/n (%) | 27 (34%)/53 (66%) |
Mean age ± SD | years | 63.5 ± 9 |
Patients with intermittent claudication (IC) | n (%) | 65 (81%) |
Patients with CLI | n (%) | 15 (19%) |
Average distance IC ± SD | meters | 100 ± 87 |
Average value ABI ± SD | ( ) | 0.5 ± 0.25 |
Patients with ASA intake | n (%) | 80 (100%) |
Patients with statin intake | n (%) | 80 (100%) |
Mean concentration of LDL ± SD | mg/dL | 119.7 ± 39.3 |
Patients with type 2 diabetes | n (%) | 28 (35%) |
Smokers (all, past) | n (%) | 74 (92.5%) |
Current smokers | n (%) | 27 (34%) |
Patients eligible for endovascular therapy (PTA) | n (%) | 45 (56%) |
Patients eligible for non-invasive (NI) treatment | n (%) | 35 (44%) |
Parameter and Unit | Value | Study Group (PAD, n = 80) | Control Group (C, n = 30) c | p | |
---|---|---|---|---|---|
IC (n = 65) a | CLI (n = 15) b | ||||
TF Ag (pg/mL) | X (± SD) | 764.1 (± 414.4) | 877.9 (± 533.2) | 133.2 (± 62.5) | a vs b < 0.001 a vs c < 0.001 b vs c < 0.001 |
TF Act (pM) | X (± SD) | 24.4 (± 18.9) | 15.8 (± 16.8) | 4.2 (± 3.96) | a vs b NS a vs c < 0.001 b vs c < 0.001 |
TFPI Ag (ng/mL) | X (± SD) | 102.3 (± 60.9) | 83.7 (± 59.6) | 71.3 (± 33.18) | a vs b < 0.001 a vs c < 0.001 b vs c < NS |
TFPI Act (unit/mL) | X (± SD) | 0.76 (± 0.53) | 1.0 (± 0.5) | 1.98 (± 1.01) | a vs b NS a vs c < 0.001 b vs c < 0.001 |
TAT (ng/mL) | X (± SD) | 57.7 (± 58.1) | 81.7 (± 52.1) | 2.7 (± 0.9) | a vs b = 0.02 a vs c < 0.001 b vs c < 0.001 |
fibrinogen (g/L) | Me (Q25;Q75) | 4.19 (3.5;4.99) | 5.33 (4.64;6.16) | 3.36 (2.8;3.7) | a vs b = 0.026 a vs c < 0.001 b vs c < 0.001 |
PLT (G/L) | Me (Q25;Q75) | 238 (204;273) | 315 (202;369) | 223 (182;282) | a vs b NS a vs c NS b vs c = 0.025 |
t-PA Ag (ng/mL) | Me (Q25;Q75) | 13.06 (8.69;16.09) | 11.96 (9.88;16.89) | 4.79 (2.62;5.77) | a vs b NS a vs c < 0.001 b vs c < 0.001 |
PAI-1 Ag (ng/mL) | Me (Q25;Q75) | 50.75 (42.83;55.91) | 52.66 (31.05;58.84) | 16.81 (14.02;22.01) | a vs b NS a vs c < 0.001 b vs c < 0.001 |
D-dimer (ng/mL) | X (± SD) | 792.49 (± 281.17) | 966.5 (± 205.34) | 312.58 (± 93.25) | a vs b < 0.05 a vs c < 0.001 b vs c < 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczór, R.; Kulwas, A.; Rość, D. Implications of Hemostasis Disorders in Patients with Critical Limb Ischemia—An In-Depth Comparison of Selected Factors. J. Clin. Med. 2020, 9, 659. https://doi.org/10.3390/jcm9030659
Wieczór R, Kulwas A, Rość D. Implications of Hemostasis Disorders in Patients with Critical Limb Ischemia—An In-Depth Comparison of Selected Factors. Journal of Clinical Medicine. 2020; 9(3):659. https://doi.org/10.3390/jcm9030659
Chicago/Turabian StyleWieczór, Radosław, Arleta Kulwas, and Danuta Rość. 2020. "Implications of Hemostasis Disorders in Patients with Critical Limb Ischemia—An In-Depth Comparison of Selected Factors" Journal of Clinical Medicine 9, no. 3: 659. https://doi.org/10.3390/jcm9030659
APA StyleWieczór, R., Kulwas, A., & Rość, D. (2020). Implications of Hemostasis Disorders in Patients with Critical Limb Ischemia—An In-Depth Comparison of Selected Factors. Journal of Clinical Medicine, 9(3), 659. https://doi.org/10.3390/jcm9030659