New Insights into the Microbial Profiles of Infected Root Canals in Traumatized Teeth
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Sample Collection, Processing, and Characterization of Isolates
2.3. Illumina MiSeq Sequencing
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Fusobacterium Nucleatum and Slackia Exigua Were the Most Prevalent Species from Root Canals Identified by Culture
3.3. Illumina MiSeq Sequencing Showed an Overall High Microbial Diversity
3.4. Trauma, Age, and Tooth Position Are Factors Influencing the Microbiota Composition
3.5. The Microbiome Composition from Root Canals Discriminates Traumatized Teeth from Other Primary Infected Non-Traumatized Teeth
3.6. Peptostreptococcaceae Yurii and Key “Bridging Species” Fusobacterium nucleatum ssp. Polymorphum and Corynebacterium Matruchotti Are Highly Associated with the Microbiota of Traumatized Teeth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glendor, U. Epidemiology of traumatic dental injuries—A 12 year review of the literature. Dent. Traumatol. 2008, 24, 603–611. [Google Scholar] [CrossRef]
- Lexomboon, D.; Carlson, C.; Andersson, R.; Von Bultzingslowen, I.; Mensah, T. Incidence and causes of dental trauma in children living in the county of Värmland, Sweden. Dent. Traumatol. 2016, 32, 58–64. [Google Scholar] [CrossRef]
- Fouad, A.F. Microbiological Aspects of Traumatic Injuries. Dent. Traumatol. 2019, 35, 324–332. [Google Scholar] [CrossRef]
- Hecová, H.; Tzigkounakis, V.; Merglova, V.; Netolický, J. A retrospective study of 889 injured permanent teeth. Dent. Traumatol. 2010, 26, 466–475. [Google Scholar] [CrossRef]
- Andreasen, J.O.; Munksgaard, E.C.; Bakland, L.K. Comparison of fracture resistance in root canals of immature sheep teeth after filling with calcium hydroxide or MTA. Dent. Traumatol. 2006, 22, 154–156. [Google Scholar] [CrossRef]
- Bell, I.M.; Gallicchio, S.N.; Stump, C.A.; Bruno, J.G.; Fan, H.; Gantert, L.T.; Hostetler, E.D.; Kemmerer, A.L.; Mcwherter, M.; Moore, E.L.; et al. [11C]MK-4232: The First Positron Emission Tomography Tracer for the Calcitonin Gene-Related Peptide Receptor. ACS Med. Chem. Lett. 2013, 4, 863–868. [Google Scholar] [CrossRef]
- Cvek, M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Dent. Traumatol. 1992, 8, 45–55. [Google Scholar] [CrossRef]
- Bonte, E.; Beslot, A.; Boukpessi, T.; Lasfargues, J.-J. MTA versus Ca(OH)2 in apexification of non-vital immature permanent teeth: A randomized clinical trial comparison. Clin. Oral Investig. 2014, 19, 1381–1388. [Google Scholar] [CrossRef]
- Banchs, F.; Trope, M. Revascularization of Immature Permanent Teeth with Apical Periodontitis: New Treatment Protocol? J. Endod. 2004, 30, 196–200. [Google Scholar] [CrossRef]
- Xuan, K.; Li, B.; Guo, H.; Sun, W.; Kou, X.; He, X.; Zhang, Y.; Sun, J.; Liu, A.; Liao, L.; et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci. Transl. Med. 2018, 10, eaaf3227. [Google Scholar] [CrossRef] [Green Version]
- Petridis, X.; Van Der Sluis, L.W.M.; Dijkstra, R.J.B.; Brinker, M.G.L.; Van Der Mei, H.C.; Harmsen, M.C. Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR-, species-, and culture-dependent fashion. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diogenes, A.; Hargreaves, K.M. Microbial Modulation of Stem Cells and Future Directions in Regenerative Endodontics. J. Endod. 2017, 43, S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillaguet, S.; Manoil, D.; Girard, M.; Louis, J.; Gaïa, N.; Leo, S.; Schrenzel, J.; Lazarevic, V. Root Microbiota in Primary and Secondary Apical Periodontitis. Front. Microbiol. 2018, 9, 2374. [Google Scholar] [CrossRef] [Green Version]
- Nagata, J.Y.; Soares, A.J.; Souza-Filho, F.J.; Zaia, A.A.; Ferraz, C.C.; Almeida, J.F.; Gomes, B.P.F.A. Microbial Evaluation of Traumatized Teeth Treated with Triple Antibiotic Paste or Calcium Hydroxide with 2% Chlorhexidine Gel in Pulp Revascularization. J. Endod. 2014, 40, 778–783. [Google Scholar] [CrossRef]
- Vestman, N.R.; Timby, N.; Holgerson, P.L.; Kressirer, C.A.; Claesson, R.; Domellöf, M.; Öhman, C.; Tanner, A.; Hernell, O.; Johansson, I. Characterization and in vitro properties of oral lactobacilli in breastfed infants. BMC Microbiol. 2013, 13, 193. [Google Scholar] [CrossRef] [Green Version]
- Johansson, I.; Esberg, A.; Eriksson, L.; Haworth, S.; Holgerson, P.L. Self-reported bovine milk intake is associated with oral microbiota composition. PLoS ONE 2018, 13, e0193504. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- SP, D. High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar]
- Chen, T.; Yu, W.-H.; Izard, J.; Baranova, O.V.; Lakshmanan, A.; Dewhirst, F.E. The Human Oral Microbiome Database: A web accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010, 2010, baq013. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S.P. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 002832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paz, L.E.C.; Dahlén, G.; Molander, A.; Möller, Å.; Bergenholtz, G. Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment. Int. Endod. J. 2003, 36, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Escapa, I.F.; Chen, T.; Huang, Y.; Gajare, P.; Dewhirst, F.E.; Lemon, K.P. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): A Resource for the Microbiome of the Human Aerodigestive Tract. mSystems 2018, 3, e00187-18. [Google Scholar] [CrossRef] [Green Version]
- Gwinn, D.C.; Allen, M.S.; Bonvechio, K.I.; Hoyer, M.V.; Beesley, L.S.; Allen, M.S. Evaluating estimators of species richness: The importance of considering statistical error rates. Methods Ecol. Evol. 2015, 7, 294–302. [Google Scholar] [CrossRef]
- Haffajee, A.D.; Teles, R.P.; Patel, M.R.; Song, X.; Yaskell, T.; Socransky, S.S. Factors affecting human supragingival biofilm composition. II. Tooth position. J. Periodontal. Res. 2009, 44, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Percival, R.S.; Challacombe, S.J.; Marsh, P.D. Age-related microbiological changes in the salivary and plaque microflora of healthy adults. J. Med Microbiol. 1991, 35, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Könönen, E. Development of oral bacterial flora in young children. Ann. Med. 2000, 32, 107–112. [Google Scholar] [CrossRef]
- Kolenbrander, P.E.; Palmer, R.J.; Rickard, A.H.; Jakubovics, N.S.; Chalmers, N.I.; Diaz, P.I. Bacterial interactions and successions during plaque development. Periodontol. 2000 2006, 42, 47–79. [Google Scholar] [CrossRef]
- Welch, J.L.M.; Rossetti, B.J.; Rieken, C.W.; Dewhirst, F.E.; Borisy, G.G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA 2016, 113, E791–E800. [Google Scholar] [CrossRef] [Green Version]
- Fouad, A. The Microbial Challenge to Pulp Regeneration. Adv. Dent. Res. 2011, 23, 285–289. [Google Scholar] [CrossRef]
- Nyvad, B.; Crielaard, W.; Mira, A.; Takahashi, N.; Beighton, D. Dental Caries from a Molecular Microbiological Perspective. Caries Res. 2013, 47, 89–102. [Google Scholar] [CrossRef]
- Siqueira, J.; Rocas, I.N. Uncultivated Phylotypes and Newly Named Species Associated with Primary and Persistent Endodontic Infections. J. Clin. Microbiol. 2005, 43, 3314–3319. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Rocas, I.N.; Siqueira, J.F.; Benno, Y. Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol. Immunol. 2006, 21, 112–122. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Alves, F.R.; Rôças, I.N. Pyrosequencing Analysis of the Apical Root Canal Microbiota. J. Endod. 2011, 37, 1499–1503. [Google Scholar] [CrossRef]
- Vengerfeldt, V.; Špilka, K.; Saag, M.; Preem, J.-K.; Oopkaup, K.; Truu, J.; Mändar, R. Highly Diverse Microbiota in Dental Root Canals in Cases of Apical Periodontitis (Data of Illumina Sequencing). J. Endod. 2014, 40, 1778–1783. [Google Scholar] [CrossRef]
- Bergenholtz, G. Micro-organisms from necrotic pulp of traumatized teeth. Odontol. Rev. 1974, 25, 347–358. [Google Scholar]
- Sundqvist, G.; Figdor, D. Life as an endodontic pathogen. Ecological differences between the untreated and root-filled root canals. Endod. Top. 2003, 6, 3–28. [Google Scholar] [CrossRef]
- Xia, T.; Baumgartner, J.C. Occurrence of Actinomyces in Infections of Endodontic Origin. J. Endod. 2003, 29, 549–552. [Google Scholar] [CrossRef]
- Goff, A.; Bunetel, L.; Mouton, C.; Bonnaure-Mallet, M. Evaluation of root canal bacteria and their antimicrobial susceptibility in teeth with necrotic pulp. Oral Microbiol. Immunol. 1997, 12, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Shokeen, B.; He, X.; Shi, W.; Lux, R. Streptococcus mutansSpaP binds to RadD ofFusobacterium nucleatumssp.polymorphum. Mol. Oral Microbiol. 2017, 32, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Holgerson, P.L.; Johansson, I. Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Elabdeen, H.Z.; Mustafa, M.; Hasturk, H.; Klepac-Ceraj, V.; Ali, R.W.; Paster, B.J.; Van Dyke, T.; Bolstad, A.I. Subgingival microbial profiles of Sudanese patients with aggressive periodontitis. J. Periodontal Res. 2015, 50, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, A.; Maiden, M.F.J.; Macuch, P.J.; Murray, L.L.; Kent, R.L. Microbiota of health, gingivitis, and initial periodontitis. J. Clin. Periodontol. 1998, 25, 85–98. [Google Scholar] [CrossRef]
- Marsh, P.; Devine, D.A. How is the development of dental biofilms influenced by the host? J. Clin. Periodontol. 2011, 38, 28–35. [Google Scholar] [CrossRef]
- Sundqvist, G. Bacteriological Studies of Necrotic Dental Pulps. Ph.D. Thesis, Umeå University, Umeå, Sweden, 1976. [Google Scholar]
Trauma (n = 30) | Non-Trauma (n = 32) | p-Value | |
---|---|---|---|
Age in years, mean | 16.6 | 50.0 | <0.001 |
Gender, % female | 63.0 | 58.1 | 0.110 |
Tooth position, % front | 96 | 35.5 | <0.001 |
Presence of sinus tract, % positive | 29.6 | 35.5 | 0.781 |
Pain, % positive | 11.1 | 22.6 | 0.311 |
CFU viable bacteria 1 | 359090 | 1119413 | 0.107 |
Illumina MiSeq | ||||||
---|---|---|---|---|---|---|
Surface Control | Root Canal Samples | |||||
Trauma | Non-Trauma | All | Trauma | Non-Trauma | All | |
No. of samples | 19 | 19 | 38 | 22 | 30 | 52 |
Sequence length (bp) | 2 × 250 | 2 × 250 | 2 × 250 | 2 × 250 | 2 × 250 | 2 × 250 |
Total number of reads after filtering (in millions) | ~1.9 | ~2.3 | ~4.2 | ~2.8 | ~3.5 | ~6.3 |
Reads per sample, mean (min-max) (in thousands) | ~97 (39–189) | ~125 (64–181) | ~111 (39–189) | ~128 (54–213) | ~114 (37–295) | ~120 (37–295) |
Phyla | 10 | 11 | 11 | 10 | 9 | 11 |
Genera | 151 | 134 | 162 | 134 | 120 | 150 |
Species/HMT 1 | 399 | 441 | 502 | 353 | 368 | 454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoharan, L.; Brundin, M.; Rakhimova, O.; Chávez de Paz, L.; Romani Vestman, N. New Insights into the Microbial Profiles of Infected Root Canals in Traumatized Teeth. J. Clin. Med. 2020, 9, 3877. https://doi.org/10.3390/jcm9123877
Manoharan L, Brundin M, Rakhimova O, Chávez de Paz L, Romani Vestman N. New Insights into the Microbial Profiles of Infected Root Canals in Traumatized Teeth. Journal of Clinical Medicine. 2020; 9(12):3877. https://doi.org/10.3390/jcm9123877
Chicago/Turabian StyleManoharan, Lokeshwaran, Malin Brundin, Olena Rakhimova, Luis Chávez de Paz, and Nelly Romani Vestman. 2020. "New Insights into the Microbial Profiles of Infected Root Canals in Traumatized Teeth" Journal of Clinical Medicine 9, no. 12: 3877. https://doi.org/10.3390/jcm9123877
APA StyleManoharan, L., Brundin, M., Rakhimova, O., Chávez de Paz, L., & Romani Vestman, N. (2020). New Insights into the Microbial Profiles of Infected Root Canals in Traumatized Teeth. Journal of Clinical Medicine, 9(12), 3877. https://doi.org/10.3390/jcm9123877