The Differences between Gluten Sensitivity, Intestinal Biomarkers and Immune Biomarkers in Patients with First-Episode and Chronic Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Collection
2.2. Laboratory Tests
2.3. Sociodemographic and Clinical Data
2.4. Gluten Intake
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Examined Sample
3.2. The Differences in Gluten Sensitivity and Inflammation Markers between Patients with Schizophrenia and Healthy Individuals
3.3. The Prevalence of Clinical Relevance
3.4. The Relationship between Gluten Sensitivity and Inflammation
3.5. The Relationship between Gluten Sensitivity, Inflammation and a Phase of Schizophrenia
3.6. The Relationship between Gluten Sensitivity, Inflammation and Lifestyle Factors
3.7. The Effect of Inflammation and Gluten Sensitivity on the Risk of Schizophrenia
3.8. Potential Risk Factors for Inflammation
4. Discussion
Limitations
5. Conclusions
- The study indicates differences in markers of intestinal permeability, inflammation, and gluten sensitivity between patients suffering from schizophrenia and healthy individuals.
- The immune response to gluten noted in schizophrenia patients depends on the phase and duration of illness.
- The connection between inflammation, intestinal-related markers, and gluten sensitivity only in the patient groups indicates possible gut–microbiota–brain axis disruptions in schizophrenia.
- Further studies are needed to confirm the role of immune–inflammatory pathways, the gut–microbiota–brain axis, and gluten sensitivity in the pathophysiology of schizophrenia.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Feigenson, K.A.; Kusnecov, A.W.; Silverstein, S.M. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 2014, 38, 72–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshavan, M.S.; Tandon, R.; Boutros, N.N.; Nasrallah, H.A. Schizophrenia, “just the facts”: What we know in 2008: Part 3: Neurobiology. Schizophr. Res. 2008, 106, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, M.A.; Vollenweider, F.X. Serotonin research: Contributions to understanding psychoses. Trends Pharm. Sci. 2008, 29, 445–453. [Google Scholar] [CrossRef]
- Watanabe, Y.; Someya, T.; Nawa, H. Cytokine hypothesis of schizophrenia pathogenesis: Evidence from human studies and animal models. Psychiatry Clin. Neurosci. 2010, 64, 217–230. [Google Scholar] [CrossRef]
- Smith, R.S. A comprehensive macrophage-T-lymphocyte theory of schizophrenia. Med. Hypotheses 1992, 39, 248–257. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Haroon, E.; Miller, A.H.; Strauss, G.P.; Buckley, P.F.; Miller, B.J. TNF-α and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr. Res 2018, 199, 281–284. [Google Scholar] [CrossRef]
- Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Spuch, C.; Caruncho, H.J.; González-Fernandez, Á.; Olivares, J.M.; Agís-Balboa, R.C. Cytokines dysregulation in schizophrenia: A systematic review of psychoneuroimmune relationship. Schizophr. Res. 2018, 197, 19–33. [Google Scholar] [CrossRef]
- Roomruangwong, C.; Noto, C.; Kanchanatawan, B.; Anderson, G.; Kubera, M.; Carvalho, A.F.; Maes, M. The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: The IRS-CIRS theory of schizophrenia. Mol. Neurobiol. 2020, 57, 778–797. [Google Scholar] [CrossRef]
- Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 2012, 57, 2096–2102. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.; Hu, X.; Wang, T.; Jin, F. Recognizing depression from the microbiota–gut–brain axis. Int. J. Mol. Sci. 2018, 19, 1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slyepchenko, A.; Maes, M.; Jacka, F.N.; Köhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; et al. Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother. Psychosom. 2017, 86, 31–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Karakula-Juchnowicz, H.; Rog, J.; Juchnowicz, D.; Łoniewski, I.; Skonieczna-Żydecka, K.; Krukow, P.; Futyma-Jedrzejewska, M.; Kaczmarczyk, M. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): A 12-week, randomized, double-blind, and placebo-controlled clinical study protocol. Nutr. J. 2019, 18, 50. [Google Scholar] [CrossRef] [Green Version]
- Karakula-Juchnowicz, H.; Dzikowski, M.; Rog, J.; Koziol, M.; Morylowska-Topolska, J.; Makarewicz, A.; Flis, M.; Juchnowicz, D. Should patients with schizophrenia be put on a gluten-free diet? An association between markers of intestinal permeability, inflammation and gluten sensitivity in patients with schizophrenia. Eur. Psychiatry 2018, 48, S351–S352. [Google Scholar]
- Severance, E.G.; Alaedini, A.; Yang, S.; Halling, M.; Gressitt, K.L.; Stallings, C.R.; Origoni, A.E.; Vaughan, C.; Khushalani, S.; Leweke, F.M.; et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr. Res. 2012, 138, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Vodjani, A. Upregulation of the intestinal paracellular pathway with breakdown of tight and adherens junctions in deficit schizophrenia. Mol. Neurobiol. 2019, 56, 7056–7073. [Google Scholar] [CrossRef]
- Bender, L. Childhood schizophrenia. Psychiat. Q. 1953, 27, 663–681. Available online: http://www.sciepub.com/reference/187268 (accessed on 12 August 2020). [CrossRef]
- Tye-Din, J.; Anderson, R. Immunopathogenesis of celiac disease. Curr. Gastroenterol. Rep. 2008, 10, 458–465. [Google Scholar] [CrossRef]
- Dale, H.F.; Biesiekierski, J.R.; Lied, G.A. Non-coeliac gluten sensitivity and the spectrum of gluten-related disorders: An updated overview. Nutr. Res. Rev. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dohan, F. Cereals and schizophrenia data and hypothesis. Acta Psychiatr. Scand. 1966, 42, 125–152. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Kanchanatawan, B.; Sirivichayakul, S.; Carvalho, A.F. In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox. Res. 2019, 35, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Vodjani, A. Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox. Res. 2019, 36, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Cascella, N.G.; Kryszak, D.; Bhatti, B.; Gregory, P.; Kelly, D.L.; Mc Evoy, J.P.; Fasano, A.; Eaton, W.W. Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophr. Bull. 2011, 37, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.-Z.; Wu, N.; Xu, Q.; Zhang, X.; Ju, G.-Z.; Law, M.H.; Wei, J. A study of circulating gliadin antibodies in schizophrenia among a Chinese population. Schizophr. Bull. 2012, 38, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Sidhom, O.; Laadhar, L.; Zitouni, M.; Ben Alaya, N.; Rafrafi, R.; Kallel-Sellami, M.; Lahmar, H.; El Hechmi, Z.; Makni, S. Spectrum of autoantibodies in Tunisian psychiatric inpatients. Immunol. Investig. 2012, 41, 538–549. [Google Scholar] [CrossRef]
- Okusaga, O.; Yolken, R.H.; Langenberg, P.; Sleemi, A.; Kelly, D.L.; Vaswani, D.; Giegling, I.; Hartmann, A.M.; Konte, B.; Friedl, M.; et al. Elevated gliadin antibody levels in individuals with schizophrenia. World J. Biol. Psychiatry 2013, 14, 509–515. [Google Scholar] [CrossRef]
- Čiháková, D.; Eaton, W.W.; Talor, M.V.; Harkus, U.H.; Demyanovich, H.K.; Rodriguez, K.; Feldman, S.; Kelly, D.L. Gliadin-related antibodies in schizophrenia. Schizophr. Res. 2018, 195, 585. [Google Scholar] [CrossRef]
- De Santis, A.; Addolorato, G.; Romito, A.; Caputo, S.; Giordano, A.; Gambassi, G.; Taranto, C.; Manna, R.; Gasbarrini, G. Schizophrenic symptoms and SPECT abnormalities in a coeliac patient: Regression after a gluten-free diet. J. Intern. Med. 1997, 242, 421–423. [Google Scholar] [CrossRef] [Green Version]
- Lionetti, E.; Leonardi, S.; Franzonello, C.; Mancardi, M.; Ruggieri, M.; Catassi, C. Gluten psychosis: Confirmation of a new clinical entity. Nutrients 2015, 7, 5532–5539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, D.L.; Demyanovich, H.K.; Rodriguez, K.M.; Čiháková, D.; Talor, M.V.; McMahon, R.P.; Richardson, C.M.; Vyas, G.; Adams, H.A.; August, S.M.; et al. Randomized controlled trial of a gluten-free diet in patients with schizophrenia positive for antigliadin antibodies (AGA IgG): A pilot feasibility study. J. Psychiatry Neurosci. 2019, 44, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub.: Washington, DC, USA, 2013; ISBN 0-89042-557-4. [Google Scholar]
- Wysokiński, A.; Margulska, A.; Strzelecki, D.; Kłoszewska, I. Levels of C-reactive protein (CRP) in patients with schizophrenia, unipolar depression and bipolar disorder. Nord. J. Psychiatry 2015, 69, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bocchio Chiavetto, L.; Bignotti, S.; Battisa Tura, G.-J.; Pioli, R.; Boin, F.; Kenis, G.; Bosmans, E.; De Jongh, R.; Lin, A.; et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur. Neuropsychopharmacol. 2000, 10, 119–124. [Google Scholar] [CrossRef]
- Sandler, N.G.; Wand, H.; Roque, A.; Law, M.; Nason, M.C.; Nixon, D.E.; Pedersen, C.; Ruxrungtham, K.; Lewin, S.R.; Emery, S. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J. Infect. Dis. 2011, 203, 780–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eser, A.; Papay, P.; Primas, C.; Pernicka, E.; Harrer, M.; Dejaco, C.; Novacek, G.; Lichtenberger, C.; Angelberger, S.; Kazemi, L. The impact of intestinal resection on serum levels of anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2012, 35, 292–299. [Google Scholar] [CrossRef]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose equivalents for antipsychotic drugs: The DDD method. Schizophr. Bull. 2016, 42, S90–S94. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, M.; Ohlsson, B.; Ulander, K. Development and psychometric testing of the visual analogue scale for irritable bowel syndrome (VAS-IBS). Bmc Gastroenterol. 2007, 7, 16. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Szponar, L.; Rychlik, E.; Wolnicka, K. Album Fotografii Produktów i Potraw: Album of Photographs of Food Products and Dishes; Instytut Żywności i Żywienia: Warsaw, Poland, 2008; ISBN 83-86060-69-7. [Google Scholar]
- Hopman, E.G.; Pruijn, R.; Tabben, E.H.; Le Cessie, S.; Mearin, M.L. Food questionnaire for the assessment of gluten intake by children 1 to 4 years old. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 791–796. [Google Scholar] [CrossRef]
- Jamnik, J.; García-Bailo, B.; Borchers, C.H.; El-Sohemy, A. Gluten intake is positively associated with plasma α2-macroglobulin in young adults–3. J. Nutr. 2015, 145, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Gressitt, K.L.; Alaedini, A.; Rohleder, C.; Enning, F.; Bumb, J.M.; Müller, J.K.; Schwarz, E.; Yolken, R.H.; Leweke, F.M. IgG dynamics of dietary antigens point to cerebrospinal fluid barrier or flow dysfunction in first-episode schizophrenia. Brain Behav. Immun. 2015, 44, 148–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, R.; Wilson, P.; St Clair, D.; Mustard, C.; Wei, J. Differential antibody responses to gliadin-derived indigestible peptides in patients with schizophrenia. Transl. Psychiatry 2017, 7, e1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachance, L.R.; McKenzie, K. Biomarkers of gluten sensitivity in patients with non-affective psychosis: A meta-analysis. Schizophr. Res. 2014, 152, 521–527. [Google Scholar] [CrossRef]
- Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Khushalani, S.; Leister, F.; Yang, S.; Krivogorsky, B.; Alaedini, A.; Yolken, R. Markers of gluten sensitivity and celiac disease in recent-onset psychosis and multi-episode schizophrenia. Biol. Psychiatry 2010, 68, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.M.; Demyanovich, H.K.; Wijtenburg, S.A.; Eaton, W.W.; Rodriguez, K.; Gaston, F.; Cihakova, D.; Talor, M.V.; Liu, F.; McMahon, R.R. Antigliadin antibodies (AGA IgG) are related to neurochemistry in schizophrenia. Front. Psychiatry 2017, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Pandurangi, A.K.; Buckley, P.F. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia. Curr. Top. Behav. Neurosci. 2020, 44, 227–244. [Google Scholar] [CrossRef]
- Karlsson, H.; Blomström, Å.; Wicks, S.; Yang, S.; Yolken, R.H.; Dalman, C. Maternal antibodies to dietary antigens and risk for nonaffective psychosis in offspring. Am. J. Psychiatry 2012, 169, 625–632. [Google Scholar] [CrossRef]
- Severance, E.G.; Gressitt, K.L.; Stallings, C.R.; Origoni, A.E.; Khushalani, S.; Leweke, F.M.; Dickerson, F.B.; Yolken, R.H. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr. Res. 2013, 148, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Weber, N.S.; Gressitt, K.L.; Cowan, D.N.; Niebuhr, D.W.; Yolken, R.H.; Severance, E.G. Monocyte activation detected prior to a diagnosis of schizophrenia in the US Military New Onset Psychosis Project (MNOPP). Schizophr. Res. 2018, 197, 465–469. [Google Scholar] [CrossRef]
- Lesh, T.A.; Careaga, M.; Rose, D.R.; McAllister, A.K.; Van de Water, J.; Carter, C.S.; Ashwood, P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: Relationships to brain structure and symptoms. J. Neuroinflamm. 2018, 15, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skonieczna-Żydecka, K.; Łoniewski, I.; Misera, A.; Stachowska, E.; Maciejewska, D.; Marlicz, W.; Galling, B. Second-generation antipsychotics and metabolism alterations: A systematic review of the role of the gut microbiome. Psychopharmacology 2019, 236, 1491–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | FS | CS | HC | Differences | |||
---|---|---|---|---|---|---|---|
n; (% male) | 52; 55.8 | 50; 52 | 60; 41.7 | FS–CS p > 0.05 | |||
FS–HC p > 0.05 | |||||||
CS–HC p > 0.05 | |||||||
Age (years) | (Me) | SD | (Me) | SD | (Me) | SD | |
22.67 (21.0) * | 5.12 | 41.52 (40.5) * | 11.31 | 31.05 * | 10.62 | FS–CS p < 0.001 | |
FS–HC p < 0.001 | |||||||
CS–HC p < 0.001 | |||||||
BMI (kg/m2) | 22.6 (21.6) * | 3.80 | 26.4 (26.0) * | 4.72 | 25.0 (24.2) * | 5.39 | FS–CS p < 0.001 |
FS–HC p = 0.042 | |||||||
CS–HC p = 0.114 | |||||||
Number of cigarettes per day | 5.71 (0) | 8.29 | 5.86 (0) | 8.72 | 1.78 (0) | 4.92 | FS–CS p = 1.000 |
FS–HC p = 0.045 | |||||||
CS–HC p = 0.006 | |||||||
Gluten intake (mg/d) | 17.13 (16.76) | 8.47 | 18.77 (18.98) * | 7.01 | 13.98 (14.16) * | 7.30 | FS–CS p = 0.522 |
FS–HC p = 0.076 | |||||||
CS–HC p = 0.003 | |||||||
Gastric symptoms (points: VAS-IBS) | 2.83 (2.0) * | 2.84 | 1.38 (0) * | 2.12 | 2.88 (2.0) * | 3.07 | FS–CS p = 0.006 |
FS–HC p = 1.000 | |||||||
CS–HC p = 0.006 | |||||||
Duration of illness (months) | 9.90 (5.0) * | 9.87 | 239.72 (228) * | 135.09 | NA | FS–CS p < 0.001 | |
Number of hospitalizations | 1.64 (1) * | 1.46 | 5.8 (5) * | 4.22 | FS–CS p < 0.001 | ||
PANSS total (points) | 95.85 (100) * | 20.85 | 73.66 (72.5) * | 18.54 | FS–CS p < 0.001 | ||
Dose of olanzapine equivalents (mg) | 4.65 (0) * | 7.12 | 17.72 (18.0) * | 8.47 | FS–CS p < 0.001 |
Group | (Me) | SD | Kruskal–Wallis Test | Post-Hoc Analysis |
---|---|---|---|---|
AGA IgA U/mL | ||||
FS | 7.32 (6.03) | 4.49 | H = 6.22 p = 0.045 | CS > HC |
CS | 10.65 (6.61) | 18.11 | ||
HC | 6.08 (5.77) | 2.97 | ||
AGA IgG U/mL | ||||
FS | 17.01 (4.97) | 42.21 | H = 3.93 p = 0.14 | NS |
CS | 9.22 (3.26) | 16.69 | ||
HC | 6.72 (4.92) | 9.18 | ||
anti-tTG IgA U/mL | ||||
FS | 16.43 (15.55) | 8.18 | H = 2.55 p = 0.38 | NS |
CS | 20.06 (16.78) | 11.76 | ||
HC | 18.86 (16.19) | 9.99 | ||
anti-DGP IgG U/mL | ||||
FS | 22.92 (8.72) | 43.68 | H = 4.40 p = 0.111 | NS |
CS | 12.09 (6.52) | 15.68 | ||
HC | 10.95 (7.18) | 18.06 | ||
ASCA IgG U/mL | ||||
FS | 3.27 (0.69) | 5.04 | H = 9.07 p = 0.011 | FS < HC |
CS | 5.41 (2.48) | 7.97 | ||
HC | 5.15 (3.89) | 4.72 | ||
sCD14 pg/mL | ||||
FS | 1632.11 (1651.63) | 387.58 | H = 13.84 p = 0.001 | CS > HC |
CS | 1960.94 (1784.48) | 766.22 | ||
HC | 1487.43 (1563.88) | 452.62 | ||
hsCRP µg/mL | ||||
FS | 1.54 (0.50) | 2.40 | H = 20.26 p < 0.001 | CS > FS CS > HC |
CS | 3.13 (1.31) | 3.30 | ||
HC | 0.99 (0.43) | 1.39 | ||
IL-6 pg/mL | ||||
FS | 4.49 (3.64) | 4.05 | H = 7.50 p = 0.023 | CS > HC |
CS | 6.49 (5.05) | 6.79 | ||
HC | 4.56 (3.02) | 6.21 |
FS (%) | CS (%) | HC (%) | Chi-Square Test | |
---|---|---|---|---|
AGA IgA | 11.54 | 26 | 5 | p = 0.005 |
AGA IgG | 30.77 | 20 | 10 | p = 0.023 |
anti-tTG2 IgA | 1.92 | 2 | 0 | NS |
anti-DGP IgG | 5.77 | 2 | 2 | NS |
ASCA | 0 | 6 | 0 | p = 0.033 |
sCD14 | 0 | 4 | 0 | NS |
hsCRP | 17.31 | 36 | 6.67 | p < 0.001 |
IL-6 | 84.62 | 90 | 91.67 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzikowski, M.; Juchnowicz, D.; Dzikowska, I.; Rog, J.; Próchnicki, M.; Kozioł, M.; Karakula-Juchnowicz, H. The Differences between Gluten Sensitivity, Intestinal Biomarkers and Immune Biomarkers in Patients with First-Episode and Chronic Schizophrenia. J. Clin. Med. 2020, 9, 3707. https://doi.org/10.3390/jcm9113707
Dzikowski M, Juchnowicz D, Dzikowska I, Rog J, Próchnicki M, Kozioł M, Karakula-Juchnowicz H. The Differences between Gluten Sensitivity, Intestinal Biomarkers and Immune Biomarkers in Patients with First-Episode and Chronic Schizophrenia. Journal of Clinical Medicine. 2020; 9(11):3707. https://doi.org/10.3390/jcm9113707
Chicago/Turabian StyleDzikowski, Michał, Dariusz Juchnowicz, Izabela Dzikowska, Joanna Rog, Michał Próchnicki, Małgorzata Kozioł, and Hanna Karakula-Juchnowicz. 2020. "The Differences between Gluten Sensitivity, Intestinal Biomarkers and Immune Biomarkers in Patients with First-Episode and Chronic Schizophrenia" Journal of Clinical Medicine 9, no. 11: 3707. https://doi.org/10.3390/jcm9113707
APA StyleDzikowski, M., Juchnowicz, D., Dzikowska, I., Rog, J., Próchnicki, M., Kozioł, M., & Karakula-Juchnowicz, H. (2020). The Differences between Gluten Sensitivity, Intestinal Biomarkers and Immune Biomarkers in Patients with First-Episode and Chronic Schizophrenia. Journal of Clinical Medicine, 9(11), 3707. https://doi.org/10.3390/jcm9113707