The Impact of Circulating Tumor Cells on Venous Thromboembolism and Cardiovascular Events in Bladder Cancer Patients Treated with Radical Cystectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sample Analyses and CTC Investigations
2.3. Extraction and Grading of Complications
2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics of the Study Cohort
3.2. Primary Endpoint Analyses
3.3. Evaluation of All 30-Day Postoperative Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Comperat, E.M.; Cowan, N.C.; Gakis, G.; Hernandez, V.; Espinos, E.L.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Vetterlein, M.W.; Klemm, J.; Gild, P.; Bradtke, M.; Soave, A.; Dahlem, R.; Fisch, M.; Rink, M. Improving Estimates of Perioperative Morbidity After Radical Cystectomy Using the European Association of Urology Quality Criteria for Standardized Reporting and Introducing the Comprehensive Complication Index. Eur. Urol. 2020, 77, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Tikkinen, K.A.O.; Craigie, S.; Agarwal, A.; Violette, P.D.; Novara, G.; Cartwright, R.; Naspro, R.; Siemieniuk, R.A.C.; Ali, B.; Eryuzlu, L.; et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Cancer Surgery: Systematic Review and Meta-analysis. Eur. Urol. 2018, 73, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ay, C.; Pabinger, I.; Cohen, A.T. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb. Haemost. 2017, 117, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Bystricky, B.; Reuben, J.M.; Mego, M. Circulating tumor cells and coagulation-Minireview. Crit. Rev. Oncol./Hematol. 2017, 114, 33–42. [Google Scholar] [CrossRef]
- Haubold, K.; Rink, M.; Spath, B.; Friedrich, M.; Chun, F.K.; Marx, G.; Amirkhosravi, A.; Francis, J.L.; Bokemeyer, C.; Eifrig, B.; et al. Tissue factor procoagulant activity of plasma microparticles is increased in patients with early-stage prostate cancer. Thromb. Haemost. 2009, 101, 1147–1155. [Google Scholar] [PubMed] [Green Version]
- Tikkinen, K.A.O.; Cartwright, R.; Gould, M.K.; Naspro, R.; Novara, G.; Sandset, P.M.; Violette, P.D.; Guyatt, G.H. EAU Guidelines on Thromboprophylaxis in Urological Surgery, Proceedings of the 32nd EAU Annual Meeting, London, UK, 2017; EAU Guidelines Office: Arnhem, The Netherlands, 2017. [Google Scholar]
- Rink, M.; Chun, F.K.; Dahlem, R.; Soave, A.; Minner, S.; Hansen, J.; Stoupiec, M.; Coith, C.; Kluth, L.A.; Ahyai, S.A.; et al. Prognostic Role and HER2 Expression of Circulating Tumor Cells in Peripheral Blood of Patients Prior to Radical Cystectomy: A Prospective Study. Eur. Urol. 2012, 61, 810–817. [Google Scholar] [CrossRef]
- Rink, M.; Schwarzenbach, H.; Riethdorf, S.; Soave, A. The current role and future directions of circulating tumor cells and circulating tumor DNA in urothelial carcinoma of the bladder. World J. Urol. 2019, 37, 1785–1799. [Google Scholar] [CrossRef]
- Mego, M.; De Giorgi, U.; Broglio, K.; Dawood, S.; Valero, V.; Andreopoulou, E.; Handy, B.; Reuben, J.M.; Cristofanilli, M. Circulating tumour cells are associated with increased risk of venous thromboembolism in metastatic breast cancer patients. Br. J. Cancer 2009, 101, 1813–1816. [Google Scholar] [CrossRef]
- Biro, O.; Hajas, O.; Nagy-Balo, E.; Soltesz, B.; Csanadi, Z.; Nagy, B. Relationship between cardiovascular diseases and circulating cell-free nucleic acids in human plasma. Biomark. Med. 2018, 12, 891–905. [Google Scholar] [CrossRef]
- Soave, A.; Riethdorf, S.; Dahlem, R.; Minner, S.; Weisbach, L.; Engel, O.; Fisch, M.; Pantel, K.; Rink, M. Detection and oncological effect of circulating tumour cells in patients with variant urothelial carcinoma histology treated with radical cystectomy. BJU Int. 2017, 119, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Soave, A.; Riethdorf, S.; Dahlem, R.; von Amsberg, G.; Minner, S.; Weisbach, L.; Engel, O.; Fisch, M.; Pantel, K.; Rink, M. A nonrandomized, prospective, clinical study on the impact of circulating tumor cells on outcomes of urothelial carcinoma of the bladder patients treated with radical cystectomy with or without adjuvant chemotherapy. Int. J. Cancer 2017, 140, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Kihara, K. C-reactive protein as a biomarker for urological cancers. Nat. Rev. Urol. 2011, 8, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Mbeutcha, A.; Shariat, S.F.; Rieken, M.; Rink, M.; Xylinas, E.; Seitz, C.; Lucca, I.; Mathieu, R.; Roupret, M.; Briganti, A.; et al. Prognostic significance of markers of systemic inflammatory response in patients with non-muscle-invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 483.e17–483.e24. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Slankamenac, K.; Graf, R.; Barkun, J.; Puhan, M.A.; Clavien, P.A. The comprehensive complication index: A novel continuous scale to measure surgical morbidity. Ann. Surg. 2013, 258, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rink, M.; Fajkovic, H.; Cha, E.K.; Gupta, A.; Karakiewicz, P.I.; Chun, F.K.; Lotan, Y.; Shariat, S.F. Death certificates are valid for the determination of cause of death in patients with upper and lower tract urothelial carcinoma. Eur. Urol. 2012, 61, 854–855. [Google Scholar] [CrossRef]
- Zareba, P.; Duivenvoorden, W.C.M.; Pinthus, J.H. Thromboembolism in Patients with Bladder Cancer: Incidence, Risk Factors and Prevention. Bladder Cancer 2018, 4, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Riethdorf, S.; Soave, A.; Rink, M. The current status and clinical value of circulating tumor cells and circulating cell-free tumor DNA in bladder cancer. Transl. Androl. Urol. 2017, 6, 1090–1110. [Google Scholar] [CrossRef]
- Sturgeon, K.M.; Deng, L.; Bluethmann, S.M.; Zhou, S.; Trifiletti, D.M.; Jiang, C.; Kelly, S.P.; Zaorsky, N.G. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 2019, 40, 3889–3897. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, R.; Soares, J.; Peixoto, A.; Cotton, S.; Lima, L.; Santos, L.L.; Ferreira, J.A. Circulating tumor cells in bladder cancer: Emerging technologies and clinical implications foreseeing precision oncology. Urol. Oncol.: Semin. Orig. Investig. 2018, 36, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Shabsigh, A.; Korets, R.; Vora, K.C.; Brooks, C.M.; Cronin, A.M.; Savage, C.; Raj, G.; Bochner, B.H.; Dalbagni, G.; Herr, H.W.; et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur. Urol. 2009, 55, 164–174. [Google Scholar] [CrossRef]
- Bronkhorst, A.J.; Ungerer, V.; Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol. Detect. Quantif. 2019, 17, 100087. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, D.; Cao, L.; Wang, Z.; Li, Y.; Liu, H.; Chen, G. Elevated preoperative plasma fibrinogen level is an independent predictor of malignancy and advanced stage disease in patients with bladder urothelial tumors. Int. J. Surg. 2016, 36, 249–254. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, X.; Wang, J.; Wang, S.; Fan, Y.; Fu, T.; Cao, S.; Zhang, X. Preoperative predictors of early death risk in bladder cancer patients treated with robot-assisted radical cystectomy. Cancer Med. 2019, 8, 3447–3452. [Google Scholar] [CrossRef]
- Campello, E.; Henderson, M.W.; Noubouossie, D.F.; Simioni, P.; Key, N.S. Contact System Activation and Cancer: New Insights in the Pathophysiology of Cancer-Associated Thrombosis. Thromb. Haemost. 2018, 118, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alevizopoulos, A.; Tyritzis, S.; Leotsakos, I.; Anastasopoulou, I.; Pournaras, C.; Kotsis, P.; Katsarou, O.; Alamanis, C.; Stravodimos, K.; Constantinides, C. Role of coagulation factors in urological malignancy: A prospective, controlled study on prostate, renal and bladder cancer. Int. J. Urol. 2017, 24, 130–136. [Google Scholar] [CrossRef]
- Amin, A.N.; Lenhart, G.; Princic, N.; Lin, J.; Thompson, S.; Johnston, S. Retrospective administrative database study of the time period of venous thromboembolism risk during and following hospitalization for major orthopedic or abdominal surgery in real-world US patients. Hosp. Pract. 2011, 39, 7–16. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Mrkobrada, M.; Sessler, D.I.; Leslie, K.; Alonso-Coello, P.; Kurz, A.; Villar, J.C.; Sigamani, A.; Biccard, B.M.; Meyhoff, C.S.; et al. Aspirin in patients undergoing noncardiac surgery. N. Engl. J. Med. 2014, 370, 1494–1503. [Google Scholar] [CrossRef] [Green Version]
All N = 189 | CTC Negative N = 146 | CTC Positive N = 43 | p-Value | |
---|---|---|---|---|
Age (years; median (IQR)) | 68 (58;75) | 68 (59;75) | 70 (57;75) | 0.810 |
Gender (n;%) | 0.333 | |||
male | 137 (72.5) | 103 (70.5) | 34 (79.1) | |
female | 52 (27.5) | 43 (29.5) | 9 (20.9) | |
ASA (n;%) | 0.613 | |||
1 | 2 (1.0) | 2 (1.4) | 0(0) | |
2 | 95 (50.3) | 76 (52.1) | 19 (44.2) | |
3 | 89 (47.1) | 66 (45.2) | 23 (53.5) | |
4 | 3 (1.6) | 2 (1.4) | 1 (2.3) | |
ECOG-PS (n; %) | 0.169 | |||
0 | 169 (89.4) | 133 (91.1) | 36 (83.7) | |
≥1 | 20 (10.6) | 13 (8.9) | 7 (16.3) | |
ACCI * (n; %) | 0.904 | |||
0 | 5 (2.6) | 4 (2.7) | 1 (2.3) | |
1 | 18 (9.5) | 13 (8.9) | 5 (11.6) | |
2 | 25 (13.2) | 20 (13.7) | 5 (11.6) | |
≥3 | 85 (45.0) | 68 (46.6) | 17 (39.5) | |
Intraoperative blood loss (mL; median (IQR)) | 500 (200;800) | 500 (200;800) | 550 (300;750) | 0.865 |
Pathological Tumor Stage (n; %) | 0.090 | |||
pT0 | 19 (10.1) | 18 (12.3) | 1 (2.3) | |
pTa | 11 (5.8) | 8 (5.5) | 3 (7.0) | |
pTis | 10 (5.3) | 9 (6.2) | 1 (2.3) | |
pT1 | 18 (9.5) | 16 (11.0) | 2 (4.7) | |
pT2 | 45 (23.8) | 32 (21.9) | 13 (30.2) | |
pT3 | 61 (32.3) | 48 (32.9) | 13 (30.2) | |
pT4 | 25 (13.2) | 15 (10.3) | 10 (23.3) | |
Combined disease stage (n; %) | 0.296 | |||
Localized (≤pT2) | 103 (54.5) | 83 (56.8) | 20 (46.5) | |
Advanced (≥pT3) | 86 (45.5) | 63 (43.2) | 23 (53.5) | |
Pathological Tumor Grade (n; %) | 0.283 | |||
No grading (pT0) | 16 (8.5) | 15 (10.3) | 1 (2.3) | |
G2 | 17 (9.0) | 13 (8.9) | 4 (9.3) | |
G3 | 156 (82.5) | 118 (80.8) | 38 (88.4) | |
Concomitant carcinoma in situ (n) | 0.585 | |||
Absent | 123 (65.1) | 97 (66.4) | 26 (60.5) | |
Present | 66 (34.9) | 49 (33.6) | 17 (39.5) | |
Lymph node status (n; %) | 0.135 | |||
pN0 | 132 (69.8) | 106 (72.6) | 26 (60.5) | |
pN+ | 57 (30.2) | 40 (27.4) | 17 (39.5) | |
Number of lymph nodes removed (median (IQR)) | 15 (10;22) | 15 (10;22) | 14 (10;22) | 0.427 |
Margin status (n; %) | 0.014 | |||
R0 | 163 (86.2) | 131 (89.7) | 32 (74.4) | |
R+ | 26 (13.8) | 15 (10.3) | 11 (25.6) | |
Lymphovascular invasion (n; %) | 0.041 | |||
Absent | 130 (68.8) | 106 (72.6) | 24 (55.8) | |
Present | 59 (31.2) | 40 (27.4) | 19 (44.2) | |
Microvascular invasion (n; %) | 0.047 | |||
Absent | 163 (86.2) | 130 (89.0) | 33 (76.7) | |
Present | 26 (13.8) | 16 (11.0) | 10 (23.3) | |
Adjuvant Chemotherapy (n; %) | 0.007 | |||
No | 137 (72.5) | 113 (77.4) | 24 (55.8) | |
Yes | 52 (27.5) | 33 (22.6) | 19 (44.2) |
All N = 189 | CTC Negative N = 146 | CTC Positive N = 43 | p-Value | |
---|---|---|---|---|
Venous Thromboembolism (n; %) | 0.132 | |||
No | 183 (96.8) | 143 (97.9) | 40 (93.0) | |
Yes | 6 (3.2) | 3 (2.1) | 3 (7.0) | |
Deep vein thrombosis | 4 (2.1) | 2 (1.4) | 2 (4.7) | |
Pulmonary embolism | 1 (0.5) | 1 (0.7) | 0(0) | |
Both | 1 (0.5) | 0 (0) | 1 (2.3) | |
Cardiovascular Events (n; %) | 0.685 | |||
No | 181 (95.8) | 139 (95.2) | 42 (97.7) | |
Yes | 8 (4.2) | 7 (4.8) | 1 (2.3) | |
Myocardial Infarction | 1 (0.5) | 1 (0.7) | 0 (0) | |
Angina pectoris | 2 (1.1) | 2 (1.4) | 0 (0) | |
CVA/TIA | 3 (1.6) | 2 (1.4) | 1 (2.3) | |
Angina pectoris and Myocardial Infarction | 1 (0.5) | 1 (0.7) | 0 (0) | |
Angina pectoris and CVA/TIA | 1 (0.5) | 1 (0.7) | 0 (0) | |
C-reactive protein (mg/L; median (IQR)) | 1 (1;11.5) | 1 (1;11) | 7 (1;14) | 0.137 |
Low (n; %) | 114 (60.3) | 93 (63.7) | 21 (48.8) | 0.08 |
High (n; %) | 75 (39.7) | 53 (36.3) | 22 (51.2) | |
Thrombocyte (Mrd/L; median) | 282 | 277 | 298 | 0.213 |
Quick (INR; median) | 0.97 | 0.97 | 0.98 | 0.442 |
APTT (s; median) | 29.13 | 28.86 | 30.07 | 0.016 |
TT (s; median) | 17.60 | 17.68 | 17.31 | 0.145 |
Fibrinogen (g/L; median) | 4.25 | 4.12 | 4.72 | 0.007 |
Parameter | All N = 189 | Subgroup | All Others | p |
---|---|---|---|---|
VTE (6 pts) | No VTE (183 pts) | |||
Age (year; median (IQR)) | 68 (58;75) | 73 (53;76) | 68 (60;75) | 0.796 |
Male gender (n; %) | 137 (72.5) | 5 (3.6) | 132 (96.4) | 0.889 |
ASA (n; %) | 0.981 | |||
1 | 2 (1.0) | 0 (0) | 2 (1.1) | |
2 | 95 (50.3) | 3 (50.0) | 92 (50.3) | |
3 | 89 (47.1) | 3 (50.0) | 86 (47.0) | |
4 | 3 (1.6) | 0 (0) | 3 (1.6) | |
ECOG ≥ 1 (n; %) | 20 (10.6) | 0 (0) | 20 (100) | 0.506 |
ACCI * (n; %) | 0.355 | |||
0 | 5 (2.6) | 0 (0) | 5 (2.7) | |
1 | 18 (9.5) | 2 (33.3) | 16 (8.7) | |
2 | 25 (13.2) | 0 (0) | 25 (13.7) | |
≥3 | 85 (45) | 4 (66.7) | 81 (44.3) | |
OR-Time (median; IQR) | 273 (225;335) | 244 (189;316) | 275 (225;335) | 0.292 |
C-reactive protein (mg/L; median (IQR)) | 1 (1;12) | 6 (1;35) | 1 (1;11) | 0.518 |
Low (n; %) | 114 (60.3) | 3 (50.0) | 111 (60.7) | 0.920 |
High (n; %) | 75 (39.7) | 3 (50.0) | 72 (39.3) | |
Thrombocyte (Mrd/L; median) | 282 | 323 | 281 | 0.295 |
Quick (INR; median) | 0.97 | 1.07 | 0.97 | 0.344 |
APTT (s; median) | 29.10 | 29.70 | 29.10 | 0.654 |
TT (s; median) | 17.60 | 17.60 | 17.60 | 0.996 |
Fibrinogen (g/L; median) | 4.25 | 4.47 | 4.25 | 0.665 |
CVE (8 pts) | No CVE (181 pts) | |||
Age (year; median (IQR)) | 68 (58;75) | 75(55;82) | 68(60;75) | 0.333 |
Male gender (n; %) | 137 (72.5) | 5(62.5) | 132(72.9) | 0.809 |
ASA (n; %) | 0.889 | |||
1 | 2 (1.0) | 0(0) | 2(1.1) | |
2 | 95 (50.3) | 5(62.5) | 90(49.7) | |
3 | 89 (47.1) | 3(37.5) | 86(47.5) | |
4 | 3 (1.6) | 0(0) | 3(1.7) | |
ECOG ≥ 1 (n; %) | 20 (10.6) | 2(10) | 18(90) | 0.443 |
ACCI * (n; %) | 0.397 | |||
0 | 5 (2.6) | 0(0) | 5(2.8) | |
1 | 18 (9.5) | 2(25) | 16(8.8) | |
2 | 25 (13.2) | 0(0) | 25(13.8) | |
≥3 | 85 (45) | 5(62.5) | 80(44.2) | |
OR-Time (median; IQR) | 273 (225;335) | 283(259;354) | 275(225;335) | 0.592 |
C-reactive protein (mg/L; median (IQR)) | 1 (1;12) | 12(3;20) | 1(1;11) | 0.068 |
Low (n; %) | 114 (60.3) | 2(25) | 112(61.9) | 0.086 |
High (n; %) | 75 (39.7) | 6(75) | 69(38.1) | |
Thrombocyte (Mrd/L; median) | 282 | 299 | 281 | 0.606 |
Quick (INR; median) | 0.97 | 0.97 | 0.97 | 0.991 |
APTT (s; median) | 29.10 | 28.70 | 29.10 | 0.668 |
TT (s; median) | 17.60 | 17.40 | 17.60 | 0.654 |
Fibrinogen (g/L; median) | 4.25 | 4.95 | 4.22 | 0.106 |
All N = 189 | CTC Negative N = 146 | CTC Positive N = 43 | p-Value | |
---|---|---|---|---|
CDC grading | 0.996 | |||
0 | 21 (11.1) | 17 (11.6) | 4 (9.3) | |
Grade I | 28 (14.8) | 22 (15.1) | 6 (14.0) | |
Grade II | 115 (60.8) | 87 (59.6) | 28 (65.1) | |
Grade IIIa | 6 (3.2) | 5 (3.4) | 1 (2.3) | |
Grade IIIb | 12 (6.3) | 9 (6.2) | 3 (7.0) | |
Grade IVa | 5 (2.6) | 4 (2.7) | 1 (2.3) | |
Grade IVb | 0 (0) | 0 (0) | 0 (0) | |
Grade V | 2 (1.1) | 2 (1.4) | 0 (0) | |
CCI (median (IQR)) | 27.2 (18.4;34.3) | 27.2 (17.3;34.3) | 25.7 (20.9;30.8) | 0.537 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rink, M.; Riethdorf, S.; Yu, H.; Kölker, M.; Vetterlein, M.W.; Dahlem, R.; Fisch, M.; Pantel, K.; Soave, A. The Impact of Circulating Tumor Cells on Venous Thromboembolism and Cardiovascular Events in Bladder Cancer Patients Treated with Radical Cystectomy. J. Clin. Med. 2020, 9, 3478. https://doi.org/10.3390/jcm9113478
Rink M, Riethdorf S, Yu H, Kölker M, Vetterlein MW, Dahlem R, Fisch M, Pantel K, Soave A. The Impact of Circulating Tumor Cells on Venous Thromboembolism and Cardiovascular Events in Bladder Cancer Patients Treated with Radical Cystectomy. Journal of Clinical Medicine. 2020; 9(11):3478. https://doi.org/10.3390/jcm9113478
Chicago/Turabian StyleRink, Michael, Sabine Riethdorf, Hang Yu, Mara Kölker, Malte W. Vetterlein, Roland Dahlem, Margit Fisch, Klaus Pantel, and Armin Soave. 2020. "The Impact of Circulating Tumor Cells on Venous Thromboembolism and Cardiovascular Events in Bladder Cancer Patients Treated with Radical Cystectomy" Journal of Clinical Medicine 9, no. 11: 3478. https://doi.org/10.3390/jcm9113478
APA StyleRink, M., Riethdorf, S., Yu, H., Kölker, M., Vetterlein, M. W., Dahlem, R., Fisch, M., Pantel, K., & Soave, A. (2020). The Impact of Circulating Tumor Cells on Venous Thromboembolism and Cardiovascular Events in Bladder Cancer Patients Treated with Radical Cystectomy. Journal of Clinical Medicine, 9(11), 3478. https://doi.org/10.3390/jcm9113478