IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Analyses
2.3. Tissue-Conditioned Media
2.4. Measurement of IgG Antibodies against HDL
2.5. Statistical Analyses
3. Results
3.1. Plasma Levels of IgG Anti-HDL Antibodies Are Increased in AAA Patients
3.2. IgG Anti-HDL Antibodies Can Be Detected in AAA Tissue-Conditioned Media
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sakalihasan, N.; Limet, R.; Defawe, O.D. Abdominal aortic aneurysm. Lancet 2005, 365, 1577–1589. [Google Scholar] [CrossRef]
- Budd, J.S.; Finch, D.R.; Carter, P.G. A study of the mortality from ruptured abdominal aortic aneurysms in a district community. Eur. J. Vasc. Surg. 1989, 3, 351–354. [Google Scholar] [CrossRef]
- Weng, L.C.; Roetker, N.S.; Lutsey, P.L.; Alonso, A.; Guan, W.; Pankow, J.S.; Folsom, A.R.; Steffen, L.M.; Pankratz, N.; Tang, W. Evaluation of the relationship between plasma lipids and abdominal aortic aneurysm: A Mendelian randomization study. PLoS ONE 2018, 13, e0195719. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C.; Holmes, M.V.; Burgess, S.; Asselbergs, F.W.; Jones, G.T.; Baas, A.F.; van’t Hof, F.N.; de Bakker, P.I.W.; Blankensteijn, J.D.; Powell, J.T.; et al. Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Meta-analysis. JAMA Cardiol. 2018, 3, 26–33. [Google Scholar] [CrossRef]
- Klarin, D.; Damrauer, S.M.; Cho, K.; Sun, Y.V.; Teslovich, T.M.; Honerlaw, J.; Gagnon, D.R.; DuVall, S.L.; Li, J.; Peloso, G.M.; et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 2018, 50, 1514–1523. [Google Scholar] [CrossRef]
- Jones, G.T.; Tromp, G.; Kuivaniemi, H.; Gretarsdottir, S.; Baas, A.F.; Giusti, B.; Strauss, E.; van’t Hof, F.N.G.; Webb, T.R.; Erdman, R.; et al. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circ. Res. 2017, 120, 341–353. [Google Scholar] [CrossRef]
- Allara, E.; Morani, G.; Carter, P.; Gkatzionis, A.; Zuber, V.; Foley, C.N.; Rees, J.M.; Mason, A.M.; Bell, S.; Gill, D.; et al. Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-angled Mendelian Randomization Investigation. Circ. Genom. Precis. Med. 2019, 12, e002711. [Google Scholar] [CrossRef]
- Burillo, E.; Lindholt, J.S.; Molina-Sánchez, P.; Jorge, I.; Martinez-Pinna, R.; Blanco-Colio, L.M.; Tarin, C.; Torres-Fonseca, M.M.; Esteban, M.; Laustsen, J.; et al. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb. Haemost. 2015, 113, 1335–1346. [Google Scholar]
- Hellenthal, F.A.M.V.I.; Pulinx, B.; Welten, R.J.T.J.; Teijink, J.A.W.; van Dieijen-Visser, M.P.; Wodzig, W.K.W.H.; Schurink, G.W.H. Circulating biomarkers and abdominal aortic aneurysm size. J. Surg. Res. 2012, 176, 672–678. [Google Scholar] [CrossRef]
- Forsdahl, S.H.; Singh, K.; Solberg, S.; Jacobsen, B.K. Risk factors for abdominal aortic aneurysms: A 7-year prospective study: The Tromsø Study, 1994–2001. Circulation 2009, 119, 2202–2208. [Google Scholar] [CrossRef]
- Torsney, E.; Pirianov, G.; Charolidi, N.; Shoreim, A.; Gaze, D.; Petrova, S.; Laing, K.; Meisinger, T.; Xiong, W.; Baxter, B.T.; et al. Elevation of plasma high-density lipoproteins inhibits development of experimental abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2678–2686. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.M.; Seto, S.W.; Moxon, J.V.; Rush, C.; Walker, P.J.; Norman, P.E.; Golledge, J. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am. J. Pathol. 2012, 181, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Escolà-Gil, J.C.; Julve, J.; Griffin, B.A.; Freeman, D.; Blanco-Vaca, F. HDL and lifestyle interventions. Handb. Exp. Pharmacol. 2015, 224, 569–592. [Google Scholar] [PubMed]
- Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, W.H.; Varma, V.K.; Sorci-Thomas, M.; Parks, J.S.; Sigmon, R.C.; Smith, T.K.; Verdery, R.B. Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 8–13. [Google Scholar] [CrossRef] [PubMed]
- DiDonato, J.A.; Huang, Y.; Aulak, K.S.; Even-Or, O.; Gerstenecker, G.; Gogonea, V.; Wu, Y.; Fox, P.L.; Tang, W.H.W.; Plow, E.F.; et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 2013, 128, 1644–1655. [Google Scholar] [CrossRef]
- Moestrup, S.K.; Kozyraki, R. Cubilin, a high-density lipoprotein receptor. Curr. Opin. Lipidol. 2000, 11, 133–140. [Google Scholar] [CrossRef]
- Michel, J.B.; Martin-Ventura, J.L.; Egido, J.; Sakalihasan, N.; Treska, V.; Lindholt, J.; Allaire, E.; Thorsteinsdottir, U.; Cockerill, G.; Swedenborg, J.; et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 2011, 90, 18–27. [Google Scholar] [CrossRef]
- Torres-Fonseca, M.; Galan, M.; Martinez-Lopez, D.; Cañes, L.; Roldan-Montero, R.; Alonso, J.; Reyero-Postigo, T.; Orriols, M.; Mendez-Barbero, N.; Sirvent, M.; et al. Pathophisiology of abdominal aortic aneurysm: Biomarkers and novel therapeutic targets. Clin. Investig. Arterioscler. 2019, 31, 166–177. [Google Scholar]
- Tilson, M.D. Decline of the atherogenic theory of the etiology of the abdominal aortic aneurysm and rise of the autoimmune hypothesis. J. Vasc. Surg. 2016, 64, 1523–1525. [Google Scholar] [CrossRef][Green Version]
- Piacentini, L.; Werba, J.P.; Bono, E.; Saccu, C.; Tremoli, E.; Spirito, R.; Colombo, G.I. Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; López-Mejías, R.; Alperi-López, M.; López, P.; Ballina-García, F.J.; González-Gay, M.Á.; Suárez, A. PON activity is modulated by rs662 polymorphism and IgG anti-HDL antibodies in Rheumatoid Arthritis patients: Potential implications for CV disease. Arthritis Rheumatol. 2016, 68, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Ballina-García, F.J.; Abal, F.; Suárez, A. Antibodies to high-density lipoproteins are associated with inflammation and cardiovascular disease in rheumatoid arthritis patients. Transl. Res. 2015, 166, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Delgado Alves, J.; Ames, P.R.J.; Donohue, S.; Stanyer, L.; Nourooz-Zadeh, J.; Ravirajan, C.; Isenberg, D.A. Antibodies to high-density lipoprotein and beta2-glycoprotein I are inversely correlated with paraoxonase activity in systemic lupus erythematosus and primary antiphospholipid syndrome. Arthritis Rheum. 2002, 46, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Rodríguez-Carrio, J.; Martínez-Zapico, A.; Pérez-Álvarez, Á.I.; López-Mejías, R.; Benavente, L.; Mozo, L.; Caminal-Montero, L.; González-Gay, M.A.; Suárez, A. Serum Levels of Anti-PON1 and Anti-HDL Antibodies as Potential Biomarkers of Premature Atherosclerosis in Systemic Lupus Erythematosus. Thromb. Haemost. 2017, 117, 2194–2206. [Google Scholar] [CrossRef]
- Batuca, J.R.; Amaral, M.C.; Favas, C.; Justino, G.C.; Papoila, A.L.; Ames, P.R.J.; Alves, J.D. Antibodies against HDL Components in Ischaemic Stroke and Coronary Artery Disease. Thromb. Haemost. 2018, 118, 1088–1100. [Google Scholar] [CrossRef]
- Carbone, F.; Nencioni, A.; Mach, F.; Vuilleumier, N.; Montecucco, F. Evidence on the pathogenic role of auto-antibodies in acute cardiovascular diseases. Thromb. Haemost. 2013, 109, 854–868. [Google Scholar] [CrossRef]
- Lindholt, J.S.; Søgaard, R. Population screening and intervention for vascular disease in Danish men (VIVA): A randomised controlled trial. Lancet 2017, 390, 2256–2265. [Google Scholar] [CrossRef]
- Grøndal, N.; Søgaard, R.; Henneberg, E.W.; Lindholt, J.S. The Viborg Vascular (VIVA) screening trial of 65-74 year old men in the central region of Denmark: Study protocol. Trials 2010, 11, 67. [Google Scholar] [CrossRef]
- Fontaine, V.; Touat, Z.; Mtairag, E.M.; Vranckx, R.; Louedec, L.; Houard, X.; Andreassian, B.; Sebbag, U.; Palombi, T.; Jacob, M.P.; et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 2004, 164, 2077–2087. [Google Scholar] [CrossRef]
- Martin-Ventura, J.L.; Duran, M.C.; Blanco-Colio, L.M.; Meilhac, O.; Leclercq, A.; Michel, J.-B.; Jensen, O.N.; Hernandez-Merida, S.; Tuñón, J.; Vivanco, F.; et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 2004, 110, 2216–2219. [Google Scholar] [CrossRef] [PubMed]
- Lindholt, J.S.; Kristensen, K.L.; Burillo, E.; Martinez-Lopez, D.; Calvo, C.; Ros, E.; Martín-Ventura, J.L.; Sala-Vila, A. Arachidonic Acid, but Not Omega-3 Index, Relates to the Prevalence and Progression of Abdominal Aortic Aneurysm in a Population-Based Study of Danish Men. J. Am. Heart Assoc. 2018, 7, e007790. [Google Scholar] [CrossRef] [PubMed]
- Lindholt, J.S.; Madsen, M.; Kirketerp-Møller, K.L.; Schlosser, A.; Kristensen, K.L.; Andersen, C.B.; Sorensen, G.L. High plasma microfibrillar-associated protein 4 is associated with reduced surgical repair in abdominal aortic aneurysms. J. Vasc. Surg. 2019, in press. [Google Scholar] [CrossRef]
- Takagi, H.; Manabe, H.; Kawai, N.; Goto, S.N.; Umemoto, T. Serum high-density and low-density lipoprotein cholesterol is associated with abdominal aortic aneurysm presence: A systematic review and meta-analysis. Int. Angiol. 2010, 29, 371–375. [Google Scholar] [PubMed]
- Kuivaniemi, H.; Platsoucas, C.D.; Tilson, M.D. Aortic aneurysms: An immune disease with a strong genetic component. Circulation 2008, 117, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Lindholt, J.S.; Shi, G.P. Chronic inflammation, immune response, and infection in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 453–463. [Google Scholar] [CrossRef]
- Dale, M.A.; Ruhlman, M.K.; Baxter, B.T. Inflammatory cell phenotypes in AAAs: Their role and potential as targets for therapy. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1746–1755. [Google Scholar] [CrossRef]
- Shimizu, K.; Mitchell, R.N.; Libby, P. Inflammation and Cellular Immune Responses in Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 987–994. [Google Scholar] [CrossRef]
- Platsoucas, C.D.; Lu, S.; Nwaneshiudu, I.; Solomides, C.; Agelan, A.; Ntaoula, N.; Purev, E.; Li, L.P.; Kratsios, P.; Mylonas, E.; et al. Abdominal aortic aneurysm is a specific antigen-driven T cell disease. Ann. N. Y. Acad. Sci. 2006, 1085, 224–235. [Google Scholar] [CrossRef]
- Schönbeck, U.; Sukhova, G.K.; Gerdes, N.; Libby, P. TH2 Predominant Immune Responses Prevail in Human Abdominal Aortic Aneurysm. Am. J. Pathol. 2002, 161, 499–506. [Google Scholar] [CrossRef]
- Galle, C.; Schandené, L.; Stordeur, P.; Peignois, Y.; Ferreira, J.; Wautrecht, J.C.; Dereume, J.P.; Goldman, M. Predominance of type 1 CD4+ T cells in human abdominal aortic aneurysm. Clin. Exp. Immunol. 2005, 142, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Meier, L.A.; Binstadt, B.A. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front. Immunol. 2018, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, Y.; Tang, W.H.W. Autoantibodies and cardiovascular dysfunction: Cause or consequence? Curr. Heart Fail. Rep. 2014, 11, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Duftner, C.; Seiler, R.; Dejaco, C.; Chemelli-Steingruber, I.; Schennach, H.; Klotz, W.; Rieger, M.; Herold, M.; Falkensammer, J.; Fraedrich, G.; et al. Antiphospholipid antibodies predict progression of abdominal aortic aneurysms. PLoS ONE 2014, 9, e99302. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; Alperi-López, M.; López-Mejías, R.; López, P.; Ballina-García, F.J.; Abal, F.; González-Gay, M.Á.; Suárez, A. Antibodies to paraoxonase 1 are associated with oxidant status and endothelial activation in rheumatoid arthritis. Clin. Sci. (Lond. Engl.) 2016, 130, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Burillo, E.; Tarin, C.; Torres-Fonseca, M.M.; Fernandez-García, C.E.; Martinez-Pinna, R.; Martinez-Lopez, D.; Llamas-Granda, P.; Camafeita, E.; Lopez, J.A.; Vega de Ceniga, M.; et al. Paraoxonase-1 overexpression prevents experimental abdominal aortic aneurysm progression. Clin. Sci. (Lond. Engl.) 2016, 130, 1027–1038. [Google Scholar] [CrossRef]
- Burillo, E.; Jorge, I.; Martínez-López, D.; Camafeita, E.; Blanco-Colio, L.M.; Trevisan-Herraz, M.; Ezkurdia, I.; Egido, J.; Michel, J.B.; Meilhac, O.; et al. Quantitative HDL Proteomics Identifies Peroxiredoxin-6 as a Biomarker of Human Abdominal Aortic Aneurysm. Sci. Rep. 2016, 6, 38477. [Google Scholar] [CrossRef]
- Rohrer, L.; Hersberger, M.; von Eckardstein, A. High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr. Opin. Lipidol. 2004, 15, 269–278. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y. V ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Lab. Investig. 2016, 96, 708–718. [Google Scholar] [CrossRef]
- McCormick, M.L.; Gavrila, D.; Weintraub, N.L. Role of Oxidative Stress in the Pathogenesis of Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 461–469. [Google Scholar] [CrossRef]
- Dullaart, R.P.F.; Pagano, S.; Perton, F.G.; Vuilleumier, N. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2019, 20, 732. [Google Scholar] [CrossRef] [PubMed]
- Vuilleumier, N.; Pagano, S.; Montecucco, F.; Quercioli, A.; Schindler, T.H.; Mach, F.; Cipollari, E.; Ronda, N.; Favari, E. Relationship between HDL Cholesterol Efflux Capacity, Calcium Coronary Artery Content, and Antibodies against ApolipoproteinA-1 in Obese and Healthy Subjects. J. Clin. Med. 2019, 8, 1225. [Google Scholar] [CrossRef] [PubMed]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Anti-Apolipoprotein A-1 IgG Predict All-Cause Mortality and Are Associated with Fc Receptor-Like 3 Polymorphisms. Front. Immunol. 2017, 8, 437. [Google Scholar] [CrossRef]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Impact of CD14 Polymorphisms on Anti-Apolipoprotein A-1 IgG-Related Coronary Artery Disease Prediction in the General Population. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Wanhainen, A.; Mani, K.; Golledge, J. Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 236–244. [Google Scholar] [CrossRef]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77.e.2. [Google Scholar] [CrossRef]
- Keller, P.F.; Pagano, S.; Roux-Lombard, P.; Sigaud, P.; Rutschmann, O.T.; Mach, F.; Hochstrasser, D.; Vuilleumier, N. Autoantibodies against apolipoprotein A-1 and phosphorylcholine for diagnosis of non-ST-segment elevation myocardial infarction. J. Intern. Med. 2012, 271, 451–462. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Montecucco, F.; Spinella, G.; Pagano, S.; Bertolotto, M.; Pane, B.; Pende, A.; Galan, K.; Roux-Lombard, P.; Combescure, C.; et al. Serum levels of anti-apolipoprotein A-1 auto-antibodies and myeloperoxidase as predictors of major adverse cardiovascular events after carotid endarterectomy. Thromb. Haemost. 2013, 109, 706–715. [Google Scholar] [PubMed]
AAA (n = 488) | Controls (n = 184) | p-Value | |
---|---|---|---|
Age | 70.0 ± 2.8 | 69.6 ± 2.9 | 0.411 |
Sex, n (%) male | 488 (100) | 184 (100) | - |
BMI, kg/cm2 | 27.4 ± 3.6 | 26.3 ± 3.3 | 0.021 |
ABI | 0.9 ± 0.2 | 1.1 ± 0.1 | 0.004 |
Aortic size, mm | 40.9 ± 11.8 | 18.2 ± 2.8 | <0.001 |
PAD, n (%) | 122 (25.2) | 5 (2.7%) | <0.001 |
hsCRP, mg/L ‡ | 3.00 (1.60–6.30) | 1.60 (0.90–3.75) | <0.001 |
Lipid profiles, mmol/L | |||
Total-cholesterol | 4.88 ± 0.91 | 4.84 ± 1.14 | 0.592 |
HDL-cholesterol | 1.17 ± 0.41 | 1.33 ± 0.45 | <0.001 |
ApoAI | 1.58 ± 0.29 | 1.72 ± 0.32 | <0.001 |
CV risk factors | |||
Current smoking, n (%) | 207 (42.4) | 34 (18.5) | <0.001 |
Hypertension, n (%) | 265 (54.4) | 82 (45.3) | 0.036 |
Systolic blood pressure, mm Hg | 155.4 ± 21.5 | 147.4 ± 19.2 | 0.021 |
Diabetes, n (%) | 57 (11.7) | 28 (15.3) | 0.209 |
Treatments, n(%) | |||
Use of statins | 250 (51.9) | 67 (36.4) | <0.001 |
Use of low-dose aspirin | 228 (47.2) | 46 (25.0) | <0.001 |
Use of b-blockers | 139 (29.1) | 40 (21.6) | 0.051 |
B | 95% CI | p-Value | |
---|---|---|---|
IgG anti-HDL/IgG | −0.054 | −0.094–−0.013 | 0.009 |
Current smoking, yes | −0.099 | −0.170–−0.027 | 0.007 |
Hypertension, yes | 0.029 | −0.040–0.099 | 0.665 |
Systolic BP, per unit | 0.001 | −0.002–0.004 | 0.629 |
BMI, per unit | −0.026 | −0.035–−0.016 | <0.001 |
PAD, yes | −0.052 | −0.139–0.035 | 0.244 |
Use of statins, yes | 0.081 | 0.002–0.160 | 0.243 |
Use of low-dose aspirin, yes | −0.039 | −0.117–0.039 | 0.326 |
B | S.E. | OR | 95% CI | p-Value | |
---|---|---|---|---|---|
Anti-HDL/IgG, yes | 0.915 | 0.215 | 2.496 | 1.637–3.807 | <0.001 |
Current smoking, yes | 1.479 | 0.522 | 4.387 | 2.661–7.234 | <0.001 |
Hypertension, yes | 0.187 | 0.259 | 1.206 | 0.726–2.003 | 0.469 |
Systolic BP, per unit | 0.068 | 0.011 | 1.070 | 1.048–1.093 | <0.001 |
BMI, per 1 kg/m2 | 0.097 | 0.033 | 1.102 | 1.032–1.176 | 0.004 |
ABI, per unit | −7.401 | 1.374 | 0.001 | 0.001–0.009 | <0.001 |
PAD, yes | 2.568 | 0.255 | 13.044 | 4.530–37.562 | <0.001 |
Use of statins, yes | 0.265 | 0.252 | 1.303 | 0.796–2.135 | 0.292 |
Use of low-dose aspirin, yes | 0.977 | 0.267 | 2.656 | 1.575–4.481 | <0.001 |
Use of b-blockers, yes | 0.002 | 0.268 | 1.002 | 0.592–1.695 | 0.994 |
B | 95% CI | p-Value | |
---|---|---|---|
Anti-HDL/IgG | 1.480 | 0.233–2.727 | 0.020 |
Current smoking, yes | 3.699 | 1.504–5.894 | <0.001 |
Hypertension, yes | 1.962 | −0.467–4.390 | 0.113 |
Systolic BP, per unit | 0.293 | 0.203–0.381 | <0.001 |
BMI, per 1 kg/m2 | 0.455 | 0.161–0.749 | 0.002 |
PAD, yes | 2.338 | −0.366–5.042 | 0.090 |
Use of statins, yes | 1.934 | −0.520–4.387 | 0.122 |
Use of low-dose aspirin, yes | 4.451 | 1.959–6.944 | <0.001 |
Use of b-blockers, yes | 0.443 | −2.060–2.947 | 0.728 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Carrio, J.; Lindholt, J.S.; Canyelles, M.; Martínez-López, D.; Tondo, M.; Blanco-Colio, L.M.; Michel, J.-B.; Escolà-Gil, J.C.; Suárez, A.; Martín-Ventura, J.L. IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. J. Clin. Med. 2020, 9, 67. https://doi.org/10.3390/jcm9010067
Rodríguez-Carrio J, Lindholt JS, Canyelles M, Martínez-López D, Tondo M, Blanco-Colio LM, Michel J-B, Escolà-Gil JC, Suárez A, Martín-Ventura JL. IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. Journal of Clinical Medicine. 2020; 9(1):67. https://doi.org/10.3390/jcm9010067
Chicago/Turabian StyleRodríguez-Carrio, Javier, Jes S. Lindholt, Marina Canyelles, Diego Martínez-López, Mireia Tondo, Luis M. Blanco-Colio, Jean-Baptiste Michel, Joan Carles Escolà-Gil, Ana Suárez, and José Luis Martín-Ventura. 2020. "IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features" Journal of Clinical Medicine 9, no. 1: 67. https://doi.org/10.3390/jcm9010067
APA StyleRodríguez-Carrio, J., Lindholt, J. S., Canyelles, M., Martínez-López, D., Tondo, M., Blanco-Colio, L. M., Michel, J.-B., Escolà-Gil, J. C., Suárez, A., & Martín-Ventura, J. L. (2020). IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. Journal of Clinical Medicine, 9(1), 67. https://doi.org/10.3390/jcm9010067