Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Experimental Cyclic Fatigue Model
2.3. Statistical Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Peters, O.A. Current challenges and concepts in the preparation of root canal systems: A review. J. Endod. 2004, 30, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Pedullà, E.; Lo Savio, F.; Boninelli, S.; Plotino, G.; Grande, N.M.; La Rosa, G.; Rapisarda, E. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining. J. Endod. 2016, 42, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Walia, H.; Brantley, W.A.; Gerstein, H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J. Endod. 1988, 14, 346–351. [Google Scholar] [CrossRef]
- Li, U.M.; Lee, B.S.; Shih, C.T.; Lan, W.H.; Lin, C.P. Cyclic fatigue of endodontic nickel titanium rotary instruments: Static and dynamic tests. J. Endod. 2002, 28, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, J.L.; Gao, Y. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: A focused review. Int. Endod. J. 2012, 45, 113–128. [Google Scholar] [CrossRef]
- Pirani, C.; Cirulli, P.P.; Chersoni, S.; Micele, L.; Ruggeri, O.; Prati, C. Cyclic fatigue testing and metallographic analysis of nickel-titanium rotary instruments. J. Endod. 2011, 37, 1013–1016. [Google Scholar] [CrossRef]
- De Arruda Santos, L.; Bahia, M.G.; de Las Casas, E.B.; Buono, V.T. Comparison of the mechanical behaviour between controlled memory and superelastic nickel-titanium files via Finite Element Analysis. J. Endod. 2013, 39, 1444–1447. [Google Scholar] [CrossRef]
- Plotino, G.; Testarelli, L.; Al-Sudani, D.; Pongione, G.; Grande, N.M.; Gambarini, G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: A comparative study. Odontology 2014, 102, 31–35. [Google Scholar] [CrossRef]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef]
- Inan, U.; Gonulol, N. Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use. J. Endod. 2009, 35, 1396–1399. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Bhagabati, N.; Yadav, S.; Talwar, S. An in vitro cyclic fatigue analysis of different endodontic nickel-titanium rotary instruments. J. Endod. 2012, 38, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.P.; Gambarra-Soares, T.; Elias, C.N.; Siqueira, J.F.; Inojosa, I.F.; Lopes, W.S.; Vieira, V.T. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase. J. Endod. 2013, 39, 516–520. [Google Scholar] [CrossRef] [PubMed]
- ANSI/ADA. Root Canal Files and Reamers, Type K for Hand Use; Specification Nº 28–2002; American Dental Association: Chicago, IL, USA, 2002. [Google Scholar]
- ISO. ISO 3630–3631: Dentistry—Root Canal Instruments—Part 1: General Requirements and Test Methods; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef]
- Topçuoğlu, H.S.; Topçuoğlu, G.; Akti, A.; Düzgün, S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J. Endod. 2016, 42, 969–971. [Google Scholar] [CrossRef]
- Mandel, E.; Adib-Yazdi, M.; Benhamou, L.M.; Lachkar, T.; Mesgouez, C.; Sobel, M. Rotary Ni-Ti profile systems for preparing curved canals in resin blocks: Influence of operator on instrument breakage. Int. Endod. J. 1999, 32, 436–443. [Google Scholar] [CrossRef]
- Yared, G.M.; Dagher, F.E.; Machtou, P.; Kulkarni, G.K. Influence of rotational speed, torque and operator proficiency on failure of Greater Taper files. Int. Endod. J. 2002, 35, 7–12. [Google Scholar] [CrossRef]
- Zelada, G.; Varela, P.; Martín, B.; Bahillo, J.G.; Magán, F.; Ahn, S. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J. Endod. 2002, 28, 540–542. [Google Scholar] [CrossRef]
- Martín, B.; Zelada, G.; Varela, P.; Bahillo, J.G.; Magán, F.; Ahn, S.; Rodríguez, C. Factors influencing the fracture of nickel-titanium rotary instruments. Int. Endod. J. 2003, 36, 262–266. [Google Scholar] [CrossRef]
- Parashos, P.; Gordon, I.; Messer, H.H. Factors influencing defects of rotary nickel-titanium instruments after clinical use. J. Endod. 2004, 30, 722–725. [Google Scholar] [CrossRef]
- Ferreira, F.; Adeodato, C.; Barbosa, I.; Aboud, L.; Scelza, P.; Zaccaro Scelza, M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: A systematic review. Int. Endod. J. 2017, 50, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Roland, D.D.; Andelin, W.E.; Browning, D.F.; Hsu, G.-H.R.; Torabinejad, M. The effect of preflaring on the rates of separation for 0.04 taper nickel titanium rotary instruments. J. Endod. 2002, 28, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Patiño, P.V.; Biedma, B.M.; Liébana, C.R.; Cantatore, G.; Bahillo, J.G. The influence of manual glide path on the separation rate of NiTi rotary instruments. J. Endod. 2005, 31, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Galli, M.; Di Nardo, D.; Seracchiani, M.; Donfrancesco, O.; Testarelli, L. Differences in cyclic fatigue lifespan between two different heat treated NiTi endodontic rotary instruments: WaveOne Gold vs EdgeOne Fire. J. Clin. Exp. Dent. 2019, 11, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Hilfer, P.B.; Bergeron, B.E.; Mayerchak, M.J.; Roberts, H.W.; Jeansonne, B.G. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods. J. Endod. 2011, 37, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Dederich, D.N.; Zakariasen, K.L. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg. Oral Med. Oral Pathol. 1986, 61, 192–196. [Google Scholar] [CrossRef]
- Ray, J.J.; Kirkpatrick, T.C.; Rutledge, R.E. Cyclic fatigue of EndoSequence and K3 rotary files in a dynamic model. J. Endod. 2007, 33, 1469–1472. [Google Scholar] [CrossRef]
- Hülsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of enginedriven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef]
- Lopes, H.P.; Britto, I.M.; Elias, C.N.; Machado de Oliveira, J.C.; Neves, M.A.; Moreira, E.J.; Siqueira, J.F. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 401–404. [Google Scholar] [CrossRef]
- Lopes, H.P.; Elias, C.N.; Vieira, M.V.; Siqueira, J.F.; Mangelli, M.; Lopes, W.S.; Vieira, V.T.; Alves, F.R.; Oliveira, J.C.; Soares, T.G. Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J. Endod. 2013, 39, 693–696. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Lopes, H.P.; Elias, C.N.; Amaral, G.; Vieira, V.T.; De Martin, A.S. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J. Endod. 2011, 37, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Gambarra-Soares, T.; Lopes, H.P.; Olivieira, J.C.M.; Chaves Souza, L.; Vieira, V.T.L.; Elias, C.N. Dynamic or static cyclic fatigue tests: Which best determines the lifespan of endodontic files? ENDO Endod. Pract. Today 2013, 7, 101–104. [Google Scholar]
- De-Deus, G.; Vieira, V.T.; da Silva, E.J.; Lopes, H.; Elias, C.N.; Moreira, E.J. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J. Endod. 2014, 40, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.; Mazza, C.; Petrovic, R.; Testarelli, L.; Gambarini, G. Influence of size and taper of artificial canals on the trajectory of NiTi instruments in cyclic fatigue studies. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 60–66. [Google Scholar] [CrossRef]









| n | Mean | SD | Minimum | Maximum | Fracture Length (mm) | |
|---|---|---|---|---|---|---|
| 30 MOV/MIN | 20 | 423.66 a | 84.61 | 216.23 | 544.40 | 3.23 | 
| 60 MOV/MIN | 20 | 234.23 b | 60.56 | 127.00 | 378.21 | 3.04 | 
| 120 MOV/MIN | 20 | 163.06 c | 45.95 | 81.80 | 241.16 | 3.81 | 
| n | Mean | SD | Minimum | Maximum | Fracture Length (mm) | |
|---|---|---|---|---|---|---|
| 30 MOV/MIN | 20 | 2824.37 a | 564.05 | 1441.55 | 3629.35 | 3.23 | 
| 60 MOV/MIN | 20 | 1560.55 b | 401.23 | 846.69 | 2501.41 | 3.04 | 
| 120 MOV/MIN | 20 | 1087.06 c | 306.34 | 545.33 | 1607.73 | 3.81 | 
| n | Mean | SD | Minimum | Maximum | Fracture Length (mm) | |
|---|---|---|---|---|---|---|
| 30 MOV/MIN | 20 | 211.60 a | 42.66 | 108.12 | 272.20 | 3.23 | 
| 60 MOV/MIN | 20 | 234.23 b | 60.56 | 127.00 | 378.21 | 3.04 | 
| 120 MOV/MIN | 20 | 326.12 b | 91.90 | 163.59 | 482.32 | 3.81 | 
| m = Weibull Shape (β) | σ0 = Weibull Scale (η) | |||||||
|---|---|---|---|---|---|---|---|---|
| Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
| 30 MOV/MIN | 6.3802 | 1.1533 | 4.4768 | 9.0927 | 455.9851 | 16.7468 | 424.3155 | 490.0185 | 
| 60 MOV/MIN | 4.2152 | 0.6990 | 3.0456 | 5.8341 | 257.1689 | 14.4489 | 230.3531 | 287.1065 | 
| 120 MOV/MIN | 4.4090 | 0.8177 | 3.0653 | 6.3417 | 179.5190 | 9.5319 | 161.7759 | 199.2080 | 
| m = Weibull Shape (β) | σ0 = Weibull Scale (η) | |||||||
|---|---|---|---|---|---|---|---|---|
| Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
| 30 MOV/MIN | 6.3802 | 1.1533 | 4.4768 | 9.0927 | 3039.9005 | 111.6454 | 2828.7697 | 3266.7895 | 
| 60 MOV/MIN | 4.2540 | 0.7079 | 3.0702 | 5.8944 | 1712.7561 | 95.3373 | 1535.7306 | 1910.1877 | 
| 120MOV/MIN | 4.4090 | 0.8177 | 3.0653 | 6.3417 | 1196.7927 | 63.5463 | 1078.5059 | 1328.0528 | 
| m = Weibull Shape (β) | σ0 = Weibull Scale (η) | |||||||
|---|---|---|---|---|---|---|---|---|
| Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
| 30 MOV/MIN | 6.3342 | 1.1474 | 4.4412 | 9.0341 | 227.8707 | 8.4275 | 211.9375 | 245.0018 | 
| 60 MOV/MIN | 4.2152 | 0.6990 | 3.0456 | 5.8341 | 257.1689 | 14.4489 | 230.3531 | 287.1065 | 
| 120 MOV/MIN | 4.4090 | 0.8177 | 3.0653 | 6.3416 | 359.0376 | 19.0640 | 323.5513 | 398.4160 | 
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubizarreta-Macho, Á.; Mena Álvarez, J.; Albaladejo Martínez, A.; Segura-Egea, J.J.; Caviedes Brucheli, J.; Agustín-Panadero, R.; López Píriz, R.; Alonso-Ezpeleta, Ó. Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. J. Clin. Med. 2020, 9, 45. https://doi.org/10.3390/jcm9010045
Zubizarreta-Macho Á, Mena Álvarez J, Albaladejo Martínez A, Segura-Egea JJ, Caviedes Brucheli J, Agustín-Panadero R, López Píriz R, Alonso-Ezpeleta Ó. Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. Journal of Clinical Medicine. 2020; 9(1):45. https://doi.org/10.3390/jcm9010045
Chicago/Turabian StyleZubizarreta-Macho, Álvaro, Jesús Mena Álvarez, Alberto Albaladejo Martínez, Juan José Segura-Egea, Javier Caviedes Brucheli, Rubén Agustín-Panadero, Roberto López Píriz, and Óscar Alonso-Ezpeleta. 2020. "Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files" Journal of Clinical Medicine 9, no. 1: 45. https://doi.org/10.3390/jcm9010045
APA StyleZubizarreta-Macho, Á., Mena Álvarez, J., Albaladejo Martínez, A., Segura-Egea, J. J., Caviedes Brucheli, J., Agustín-Panadero, R., López Píriz, R., & Alonso-Ezpeleta, Ó. (2020). Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. Journal of Clinical Medicine, 9(1), 45. https://doi.org/10.3390/jcm9010045
 
        





 
       