Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Experimental Cyclic Fatigue Model
2.3. Statistical Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Peters, O.A. Current challenges and concepts in the preparation of root canal systems: A review. J. Endod. 2004, 30, 559–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedullà, E.; Lo Savio, F.; Boninelli, S.; Plotino, G.; Grande, N.M.; La Rosa, G.; Rapisarda, E. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining. J. Endod. 2016, 42, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Walia, H.; Brantley, W.A.; Gerstein, H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J. Endod. 1988, 14, 346–351. [Google Scholar] [CrossRef]
- Li, U.M.; Lee, B.S.; Shih, C.T.; Lan, W.H.; Lin, C.P. Cyclic fatigue of endodontic nickel titanium rotary instruments: Static and dynamic tests. J. Endod. 2002, 28, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, J.L.; Gao, Y. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: A focused review. Int. Endod. J. 2012, 45, 113–128. [Google Scholar] [CrossRef]
- Pirani, C.; Cirulli, P.P.; Chersoni, S.; Micele, L.; Ruggeri, O.; Prati, C. Cyclic fatigue testing and metallographic analysis of nickel-titanium rotary instruments. J. Endod. 2011, 37, 1013–1016. [Google Scholar] [CrossRef]
- De Arruda Santos, L.; Bahia, M.G.; de Las Casas, E.B.; Buono, V.T. Comparison of the mechanical behaviour between controlled memory and superelastic nickel-titanium files via Finite Element Analysis. J. Endod. 2013, 39, 1444–1447. [Google Scholar] [CrossRef]
- Plotino, G.; Testarelli, L.; Al-Sudani, D.; Pongione, G.; Grande, N.M.; Gambarini, G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: A comparative study. Odontology 2014, 102, 31–35. [Google Scholar] [CrossRef]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Inan, U.; Gonulol, N. Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use. J. Endod. 2009, 35, 1396–1399. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J. Endod. 2009, 35, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Bhagabati, N.; Yadav, S.; Talwar, S. An in vitro cyclic fatigue analysis of different endodontic nickel-titanium rotary instruments. J. Endod. 2012, 38, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.P.; Gambarra-Soares, T.; Elias, C.N.; Siqueira, J.F.; Inojosa, I.F.; Lopes, W.S.; Vieira, V.T. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase. J. Endod. 2013, 39, 516–520. [Google Scholar] [CrossRef] [PubMed]
- ANSI/ADA. Root Canal Files and Reamers, Type K for Hand Use; Specification Nº 28–2002; American Dental Association: Chicago, IL, USA, 2002. [Google Scholar]
- ISO. ISO 3630–3631: Dentistry—Root Canal Instruments—Part 1: General Requirements and Test Methods; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef]
- Topçuoğlu, H.S.; Topçuoğlu, G.; Akti, A.; Düzgün, S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J. Endod. 2016, 42, 969–971. [Google Scholar] [CrossRef]
- Mandel, E.; Adib-Yazdi, M.; Benhamou, L.M.; Lachkar, T.; Mesgouez, C.; Sobel, M. Rotary Ni-Ti profile systems for preparing curved canals in resin blocks: Influence of operator on instrument breakage. Int. Endod. J. 1999, 32, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Yared, G.M.; Dagher, F.E.; Machtou, P.; Kulkarni, G.K. Influence of rotational speed, torque and operator proficiency on failure of Greater Taper files. Int. Endod. J. 2002, 35, 7–12. [Google Scholar] [CrossRef]
- Zelada, G.; Varela, P.; Martín, B.; Bahillo, J.G.; Magán, F.; Ahn, S. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J. Endod. 2002, 28, 540–542. [Google Scholar] [CrossRef]
- Martín, B.; Zelada, G.; Varela, P.; Bahillo, J.G.; Magán, F.; Ahn, S.; Rodríguez, C. Factors influencing the fracture of nickel-titanium rotary instruments. Int. Endod. J. 2003, 36, 262–266. [Google Scholar] [CrossRef]
- Parashos, P.; Gordon, I.; Messer, H.H. Factors influencing defects of rotary nickel-titanium instruments after clinical use. J. Endod. 2004, 30, 722–725. [Google Scholar] [CrossRef]
- Ferreira, F.; Adeodato, C.; Barbosa, I.; Aboud, L.; Scelza, P.; Zaccaro Scelza, M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: A systematic review. Int. Endod. J. 2017, 50, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Roland, D.D.; Andelin, W.E.; Browning, D.F.; Hsu, G.-H.R.; Torabinejad, M. The effect of preflaring on the rates of separation for 0.04 taper nickel titanium rotary instruments. J. Endod. 2002, 28, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Patiño, P.V.; Biedma, B.M.; Liébana, C.R.; Cantatore, G.; Bahillo, J.G. The influence of manual glide path on the separation rate of NiTi rotary instruments. J. Endod. 2005, 31, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Galli, M.; Di Nardo, D.; Seracchiani, M.; Donfrancesco, O.; Testarelli, L. Differences in cyclic fatigue lifespan between two different heat treated NiTi endodontic rotary instruments: WaveOne Gold vs EdgeOne Fire. J. Clin. Exp. Dent. 2019, 11, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Hilfer, P.B.; Bergeron, B.E.; Mayerchak, M.J.; Roberts, H.W.; Jeansonne, B.G. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods. J. Endod. 2011, 37, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Dederich, D.N.; Zakariasen, K.L. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg. Oral Med. Oral Pathol. 1986, 61, 192–196. [Google Scholar] [CrossRef]
- Ray, J.J.; Kirkpatrick, T.C.; Rutledge, R.E. Cyclic fatigue of EndoSequence and K3 rotary files in a dynamic model. J. Endod. 2007, 33, 1469–1472. [Google Scholar] [CrossRef]
- Hülsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of enginedriven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Lopes, H.P.; Britto, I.M.; Elias, C.N.; Machado de Oliveira, J.C.; Neves, M.A.; Moreira, E.J.; Siqueira, J.F. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 401–404. [Google Scholar] [CrossRef]
- Lopes, H.P.; Elias, C.N.; Vieira, M.V.; Siqueira, J.F.; Mangelli, M.; Lopes, W.S.; Vieira, V.T.; Alves, F.R.; Oliveira, J.C.; Soares, T.G. Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J. Endod. 2013, 39, 693–696. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Lopes, H.P.; Elias, C.N.; Amaral, G.; Vieira, V.T.; De Martin, A.S. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments. J. Endod. 2011, 37, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Gambarra-Soares, T.; Lopes, H.P.; Olivieira, J.C.M.; Chaves Souza, L.; Vieira, V.T.L.; Elias, C.N. Dynamic or static cyclic fatigue tests: Which best determines the lifespan of endodontic files? ENDO Endod. Pract. Today 2013, 7, 101–104. [Google Scholar]
- De-Deus, G.; Vieira, V.T.; da Silva, E.J.; Lopes, H.; Elias, C.N.; Moreira, E.J. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J. Endod. 2014, 40, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.; Mazza, C.; Petrovic, R.; Testarelli, L.; Gambarini, G. Influence of size and taper of artificial canals on the trajectory of NiTi instruments in cyclic fatigue studies. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 60–66. [Google Scholar] [CrossRef]
n | Mean | SD | Minimum | Maximum | Fracture Length (mm) | |
---|---|---|---|---|---|---|
30 MOV/MIN | 20 | 423.66 a | 84.61 | 216.23 | 544.40 | 3.23 |
60 MOV/MIN | 20 | 234.23 b | 60.56 | 127.00 | 378.21 | 3.04 |
120 MOV/MIN | 20 | 163.06 c | 45.95 | 81.80 | 241.16 | 3.81 |
n | Mean | SD | Minimum | Maximum | Fracture Length (mm) | |
---|---|---|---|---|---|---|
30 MOV/MIN | 20 | 2824.37 a | 564.05 | 1441.55 | 3629.35 | 3.23 |
60 MOV/MIN | 20 | 1560.55 b | 401.23 | 846.69 | 2501.41 | 3.04 |
120 MOV/MIN | 20 | 1087.06 c | 306.34 | 545.33 | 1607.73 | 3.81 |
n | Mean | SD | Minimum | Maximum | Fracture Length (mm) | |
---|---|---|---|---|---|---|
30 MOV/MIN | 20 | 211.60 a | 42.66 | 108.12 | 272.20 | 3.23 |
60 MOV/MIN | 20 | 234.23 b | 60.56 | 127.00 | 378.21 | 3.04 |
120 MOV/MIN | 20 | 326.12 b | 91.90 | 163.59 | 482.32 | 3.81 |
m = Weibull Shape (β) | σ0 = Weibull Scale (η) | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
30 MOV/MIN | 6.3802 | 1.1533 | 4.4768 | 9.0927 | 455.9851 | 16.7468 | 424.3155 | 490.0185 |
60 MOV/MIN | 4.2152 | 0.6990 | 3.0456 | 5.8341 | 257.1689 | 14.4489 | 230.3531 | 287.1065 |
120 MOV/MIN | 4.4090 | 0.8177 | 3.0653 | 6.3417 | 179.5190 | 9.5319 | 161.7759 | 199.2080 |
m = Weibull Shape (β) | σ0 = Weibull Scale (η) | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
30 MOV/MIN | 6.3802 | 1.1533 | 4.4768 | 9.0927 | 3039.9005 | 111.6454 | 2828.7697 | 3266.7895 |
60 MOV/MIN | 4.2540 | 0.7079 | 3.0702 | 5.8944 | 1712.7561 | 95.3373 | 1535.7306 | 1910.1877 |
120MOV/MIN | 4.4090 | 0.8177 | 3.0653 | 6.3417 | 1196.7927 | 63.5463 | 1078.5059 | 1328.0528 |
m = Weibull Shape (β) | σ0 = Weibull Scale (η) | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
30 MOV/MIN | 6.3342 | 1.1474 | 4.4412 | 9.0341 | 227.8707 | 8.4275 | 211.9375 | 245.0018 |
60 MOV/MIN | 4.2152 | 0.6990 | 3.0456 | 5.8341 | 257.1689 | 14.4489 | 230.3531 | 287.1065 |
120 MOV/MIN | 4.4090 | 0.8177 | 3.0653 | 6.3416 | 359.0376 | 19.0640 | 323.5513 | 398.4160 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubizarreta-Macho, Á.; Mena Álvarez, J.; Albaladejo Martínez, A.; Segura-Egea, J.J.; Caviedes Brucheli, J.; Agustín-Panadero, R.; López Píriz, R.; Alonso-Ezpeleta, Ó. Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. J. Clin. Med. 2020, 9, 45. https://doi.org/10.3390/jcm9010045
Zubizarreta-Macho Á, Mena Álvarez J, Albaladejo Martínez A, Segura-Egea JJ, Caviedes Brucheli J, Agustín-Panadero R, López Píriz R, Alonso-Ezpeleta Ó. Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. Journal of Clinical Medicine. 2020; 9(1):45. https://doi.org/10.3390/jcm9010045
Chicago/Turabian StyleZubizarreta-Macho, Álvaro, Jesús Mena Álvarez, Alberto Albaladejo Martínez, Juan José Segura-Egea, Javier Caviedes Brucheli, Rubén Agustín-Panadero, Roberto López Píriz, and Óscar Alonso-Ezpeleta. 2020. "Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files" Journal of Clinical Medicine 9, no. 1: 45. https://doi.org/10.3390/jcm9010045
APA StyleZubizarreta-Macho, Á., Mena Álvarez, J., Albaladejo Martínez, A., Segura-Egea, J. J., Caviedes Brucheli, J., Agustín-Panadero, R., López Píriz, R., & Alonso-Ezpeleta, Ó. (2020). Influence of the Pecking Motion Frequency on the Cyclic Fatigue Resistance of Endodontic Rotary Files. Journal of Clinical Medicine, 9(1), 45. https://doi.org/10.3390/jcm9010045