Apolipoprotein B/Apolipoprotein A-I Ratio Is a Better Predictor of Cancer Mortality Compared with C-Reactive Protein: Results from Two Multi-Ethnic US Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Apolipoproteins Analysis
2.3. Mortality
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Relations of Apos and CRP with Cancer Mortality
3.3. Predictive Comparisons
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harikrishnan, S.; Jeemon, P.; Mini, G.K.; Thankappan, K.R.; Sylaja, P. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar]
- Besler, C.; Luscher, T.F.; Landmesser, U. Molecular mechanisms of vascular effects of High-density lipoprotein: Alterations in cardiovascular disease. EMBO Mol. Med. 2012, 4, 251–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otocka-Kmiecik, A.; Mikhailidis, D.P.; Nicholls, S.J.; Davidson, M.; Rysz, J.; Banach, M. Dysfunctional HDL: A novel important diagnostic and therapeutic target in cardiovascular disease? Prog. Lipid Res. 2012, 51, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Penson, P.E.; Long, D.L.; Howard, G.; Toth, P.P.; Muntner, P.; Howard, V.J.; Safford, M.M.; Jones, S.R.; Martin, S.S.; Mazidi, M.; et al. Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity C-reactive protein, and health outcomes in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) study. Eur. Heart J. 2018, 39, 3641–3653. [Google Scholar] [CrossRef] [PubMed]
- Sathiyakumar, V.; Kapoor, K.; Jones, S.R.; Banach, M.; Martin, S.S.; Toth, P.P. Novel Therapeutic Targets for Managing Dyslipidemia. Trends Pharmacol. Sci. 2018, 39, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Boren, J.; Williams, K.J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: A triumph of simplicity. Curr. Opin. Lipidol. 2016, 27, 473–483. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. The apoB/apoA-I ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy—A review of the evidence. J. Int. Med. 2006, 259, 493–519. [Google Scholar] [CrossRef]
- Thompson, A.; Danesh, J. Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: A literature-based meta-analysis of prospective studies. J. Int. Med. 2006, 259, 481–492. [Google Scholar] [CrossRef]
- Ingelsson, E.; Schaefer, E.J.; Contois, J.H.; McNamara, J.R.; Sullivan, L.; Keyes, M.J.; Pencina, M.J.; Schoonmaker, C.; Wilson, P.W.; D’Agostino, R.B.; et al. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA 2007, 298, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Johnson, J.; Fisher, R.M.; Romero-Corral, A.; Somers, V.K.; Lopez-Jimenez, F.; Öhrvik, J.; Walldius, G.; Hellenius, M.L.; Hamsten, A. Concentration of apolipoprotein B is comparable with the apolipoprotein B/apolipoprotein A–I ratio and better than routine clinical lipid measurements in predicting coronary heart disease mortality: Findings from a multi-ethnic US population. Eur. Heart J. 2009, 30, 710–717. [Google Scholar] [CrossRef]
- Sierra-Johnson, J.; Romero-Corral, A.; Lopez-Jimenez, F. Utility of different lipid measures to predict coronary heart disease. JAMA 2008, 299, 35–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-W.; Bae, S.M.; Lim, H.; Kim, Y.J.; Ahn, W.S. Development of multiplexed bead-based immunoassays for the detection of early stage ovarian cancer using a combination of serum biomarkers. PLoS ONE 2012, 7, e44960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehmann, M.; Felix, K.; Hartmann, D.; Schnölzer, M.; Nees, M.; Vorderwülbecke, S.; Bogumil, R.; Büchler, M.W.; Friess, H. Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas 2007, 34, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-J.; Hou, M.-F.; Tsai, S.-M.; Wu, S.-H.; Hou, L.A.; Ma, H.; Shann, T.Y.; Wu, S.H.; Tsai, L.Y. The association between lipid profiles and breast cancer among Taiwanese women. Clin. Chem. Lab. Med. 2007, 45, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.M.; Boatman, K.K.; McConathy, W.J. Serum lipids and apolipoproteins in women with breast masses. Breast Cancer Res. Treat. 1995, 34, 161–169. [Google Scholar] [CrossRef]
- Furberg, A.-S.; Veierød, M.B.; Wilsgaard, T.; Bernstein, L.; Thune, I. Serum high-density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J. Natl. Cancer Inst. 2004, 96, 1152–1160. [Google Scholar] [CrossRef]
- Kucharska-Newton, A.M.; Rosamond, W.D.; Mink, P.J.; Alberg, A.J.; Shahar, E.; Folsom, A.R. HDL-cholesterol and incidence of breast cancer in the ARIC cohort study. Ann. Epidemiol. 2008, 18, 671–677. [Google Scholar] [CrossRef]
- Martin, L.J.; Melnichouk, O.; Huszti, E.; Connelly, P.W.; Greenberg, C.V.; Minkin, S.; Boyd, N.F. Serum lipids, lipoproteins, and risk of breast cancer: A nested case-control study using multiple time points. J. Nat. Cancer Inst. 2015, 107, djv032. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, J.-H.; Park, S.K. Association of apolipoprotein B and incidence of metabolic syndrome in Korean men: A 5-years’ follow-up study. Atherosclerosis 2013, 226, 496–501. [Google Scholar] [CrossRef]
- Seo, M.H.; Bae, J.C.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; Park, S.W.; Kim, S.W.; Lee, W.Y. Association of lipid and lipoprotein profiles with future development of type 2 diabetes in nondiabetic Korean subjects: A 4-year retrospective, longitudinal study. J. Clin. Endocrinol. Metab. 2011, 96, E2050–E2054. [Google Scholar] [CrossRef] [Green Version]
- Cowey, S.; Hardy, R.W. The metabolic syndrome: A high-risk state for cancer? Am. J. Pathol. 2006, 169, 1505–1522. [Google Scholar] [CrossRef] [PubMed]
- Borgquist, S.; Butt, T.; Almgren, P.; Shiffman, D.; Stocks, T.; Orho-Melander, M.; Manjer, J.; Melander, O. Apolipoproteins, lipids and risk of cancer. Int. J. Cancer 2016, 138, 2648–2656. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Wulaningsih, W.; Melvin, J.; Santaolalla, A.; De Piano, M.; Arthur, R.; van Hemelrijck, M. Metabolic serum biomarkers for the prediction of cancer: A follow-up of the studies conducted in the Swedish AMORIS study. Ecancermedicalscience 2015, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Allin, K.H.; Nordestgaard, B.G. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit. Rev. Clin. Lab. Sci. 2011, 48, 155–170. [Google Scholar] [CrossRef]
- NHANES-III: Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/Nhanes3/SurveyMethods.aspx (accessed on 19 August 2017).
- Remer, T. Influence of nutrition on acid-base balance-metabolic aspects. Eur. J. Nutr. 2001, 40, 214–220. [Google Scholar] [CrossRef]
- Engberink, M.F.; Bakker, S.J.; Brink, E.J.; van Baak, M.A.; van Rooij, F.J.; Hofman, A.; Witteman, J.C.; Geleijnse, J.M. Dietary acid load and risk of hypertension: The Rotterdam Study. Am. J. Clin. Nutr. 2012, 95, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- National Center for Health Statistics. Office of Analysis and Epidemiology, Public-Use NHANES III Linked Mortality File. 2007; Maryland, Hyattsville. Available online: http://www.cdc.gov/nchs/r&d/nchs_datalinkage/nhanes3_data_linkage_mortality_activities.htm (accessed on 19 August 2017).
- NHANES Statistics: Analytic and Reporting Guidelines. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/nhanes_analytic_guidelines_dec_2005.pdf (accessed on 19 August 2017).
- Allin, K.H.; Bojesen, S.E.; Nordestgaard, B.G. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J. Clin. Oncol. 2009, 27, 2217–2224. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Caporaso, N.E.; Katki, H.A.; Wong, H.L.; Chatterjee, N.; Pine, S.R.; Chanock, S.J.; Goedert, J.J.; Engels, E.A. C-reactive protein and risk of lung cancer. J. Clin. Oncol. 2010, 28, 2719–2726. [Google Scholar] [CrossRef] [Green Version]
- Otani, T.; Iwasaki, M.; Sasazuki, S.; Inoue, M.; Tsugane, S. Plasma C-reactive protein and risk of colorectal cancer in a nested case-control study: Japan Public Health Center-based prospective study. Cancer Epidemiol. Biomark. Prev. 2006, 15, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Tsilidis, K.K.; Branchini, C.; Guallar, E.; Helzlsouer, K.J.; Erlinger, T.P.; Platz, E.A. C-reactive protein and colorectal cancer risk: A systematic review of prospective studies. Int. J. Cancer 2008, 123, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Buring, J.E.; Lee, I.M.; Cook, N.R.; Ridker, P.M. C-reactive protein levels are not associated with increased risk for colorectal cancer in women. Ann. Int. Med. 2005, 142, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Allin, K.H.; Nordestgaard, B.G.; Zacho, J.; Tybjaerg-Hansen, A.; Bojesen, S.E. C-reactive protein and the risk of cancer: A mendelian randomization study. J. Natl. Cancer Inst. 2010, 102, 202–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikkila, K.; Silander, K.; Salomaa, V.; Jousilahti, P.; Koskinen, S.; Pukkala, E.; Perola, M. C-reactive protein-associated genetic variants and cancer risk: Findings from FINRISK 1992, FINRISK 1997 and Health 2000 studies. Eur. J. Cancer 2011, 47, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Pirro, M.; Ricciuti, B.; Rader, D.J.; Catapano, A.L.; Sahebkar, A.; Banach, M. High density lipoprotein cholesterol and cancer: Marker or causative? Prog. Lipid Res. 2018, 71, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Cine, N.; Baykal, A.T.; Sunnetci, D.; Canturk, Z.; Serhatli, M.; Savli, H. Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer. Oncol. Rep. 2014, 32, 1078–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- His, M.; Zelek, L.; Deschasaux, M.; Pouchieu, C.; Kesse-Guyot, E.; Hercberg, S.; Galan, P.; Latino-Martel, P.; Blacher, J.; Touvier, M. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur. J. Epidemiol. 2014, 29, 119–132. [Google Scholar] [CrossRef]
- Lin, X.; Hong, S.; Huang, J.; Chen, Y.; Chen, Y.; Wu, Z. Plasma apolipoprotein A1 levels at diagnosis are independent prognostic factors in invasive ductal breast cancer. Discov. Med. 2017, 23, 247–258. [Google Scholar]
- Van Duijnhoven, F.J.; Bueno-De-Mesquita, H.B.; Calligaro, M.; Jenab, M.; Pischon, T.; Jansen, E.H.; Frohlich, J.; Ayyobi, A.; Overvad, K.; Toft-Petersen, A.P.; et al. Blood lipid and lipoprotein concentrations and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Gut 2011, 60, 1094–1102. [Google Scholar] [CrossRef]
- Cheng, T.; Dai, X.; Zhou, D.L.; Lv, Y.; Miao, L.Y. Correlation of apolipoprotein A-I kinetics with survival and response to first-line platinum-based chemotherapy in advanced non-small cell lung cancer. Med. Oncol. 2015, 32, 407. [Google Scholar] [CrossRef]
- Qin, X.; Chen, Q.; Sun, C.; Wang, C.; Peng, Q.; Xie, L.; Liu, Y.; Li, S. High-throughput screening of tumor metastatic-related differential glycoprotein in hepatocellular carcinoma by iTRAQ combines lectin-related techniques. Med. Oncol. 2013, 30, 420. [Google Scholar] [CrossRef] [PubMed]
- Tuft Stavnes, H.; Nymoen, D.A.; Hetland Falkenthal, T.E.; Kaern, J.; Trope, C.G.; Davidson, B. APOA1 mRNA expression in ovarian serous carcinoma effusions is a marker of longer survival. Am. J. Clin. Pathol. 2014, 142, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Cruz, P.M.; Mo, H.; McConathy, W.J.; Sabnis, N.; Lacko, A.G. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: A review of scientific findings, relevant to future cancer therapeutics. Front. Pharmacol. 2013, 4, 119. [Google Scholar] [CrossRef] [Green Version]
- Penson, P.; Long, D.L.; Howard, G.; Howard, V.J.; Jones, S.R.; Martin, S.S.; Mikhailidis, D.P.; Muntner, P.; Rizzo, M.; Rader, D.J.; et al. Associations between cardiovascular disease, cancer, and very low high-density lipoprotein cholesterol in the REasons for Geographical and Racial Differences in Stroke (REGARDS) study. Cardiovasc. Res. 2019, 115, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Mikhailidis, D.P.; Banach, M. Associations between risk of overall mortality, cause-specific mortality and level of inflammatory factors with extremely low and high high-density lipoprotein cholesterol levels among American adults. Int. J. Cardiol. 2019, 276, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, S.; Ricciuti, B.; Pirro, M.; Butler, A.E.; Atkin, S.L.; Banach, M.; Sahebkar, A. High-Density Lipoprotein Components and Functionality in Cancer: State-of-the-Art. Trends Endocrinol. Metab. 2019, 30, 12–24. [Google Scholar] [CrossRef] [PubMed]
Apolipoprotein B Levels to Apolipoprotein A-I Ratio | ||||||
---|---|---|---|---|---|---|
Q1 (n = 1923) | Q2 (n = 1925) | Q3 (n = 1924) | Q4 (n = 1923) | p-Value | ||
Median (25th–75th) | 0.50 (0.45–0.55) | 0.65 (0.62–0.69) | 0.80 (0.76–0.85) | 1.01 (0.95–1.10) | ||
Age (Years) | 44.1 ± 0.4 | 47.7 ± 0.4 | 51.2 ± 0.4 | 53.6 ± 0.4 | <0.001 | |
Sex | Men (%) | 43.8 | 37.3 | 46.0 | 62.2 | <0.001 |
Women (%) | 56.2 | 62.7 | 54.0 | 37.8 | ||
Race/Ethnicity | Non-Hispanic White (%) | 64.9 | 69.7 | 77.0 | 81.7 | <0.001 |
Non-Hispanic Black (%) | 32.7 | 28.0 | 21.3 | 16.4 | ||
Mexican-American (%) | 2.5 | 2.4 | 1.7 | 1.8 | ||
Education level: <9th grade, (%) | 19.9 | 24.8 | 28.0 | 28.6 | <0.001 | |
Poverty-to-income ratio (PIR) (n) | 2.7 ± 0.03 | 2.2 ± 0.03 | 2.5 ± 0.02 | 2.6 ± 0.02 | <0.001 | |
Smoking (%) | 25.1 | 26.9 | 28.4 | 26.1 | <0.001 | |
Alcohol consumption (g/day) | 9.5 ± 0.2 | 7.4 ± 0.3 | 10.2 ± 0.2 | 15.1 ± 0.3 | <0.001 | |
Body mass index (kg/m2) | 23.1 ± 0.3 | 25.1 ± 0.3 | 26.3 ± 0.3 | 27.1 ± 0.3 | <0.001 | |
Systolic blood pressure (mmHg) | 118.1 ± 3.1 | 122.8 ± 2.9 | 124.1 ± 3.0 | 128.6 ± 2.8 | <0.001 | |
Diastolic blood pressure (mmHg) | 70.4 ± 2.0 | 73.8 ± 2.6 | 74.4 ± 2.1 | 78.2 ± 2.1 | <0.001 | |
Fasting blood glucose (mg/dL) | 118.2 ± 3.2 | 117.4 ± 2.8 | 119.3 ± 2.4 | 122.2 ± 2.5 | <0.001 | |
Triglyceride (mg/dL) | 81.2 ± 2.3 | 94.4 ± 2.8 | 127.2 ± 2.4 | 178.5 ± 2.1 | <0.001 | |
Low-density lipoprotein (mg/dL) | 109.2 ± 2.1 | 130.3 ± 2.0 | 143.4 ± 2.0 | 172.2 ± 2.4 | <0.001 | |
C-reactive protein (g/dL) | 0.39 ± 0.02 | 0.42 ± 0.01 | 0.46 ± 0.01 | 0.45 ± 0.01 | <0.001 | |
Healthy Eating Index (HEI) (n) | 63.2 ± 0.4 | 61.3 ± 0.3 | 63.2 ± 0.3 | 64.9 ± 0.4 | <0.001 | |
Dietary cholesterol (g/day) | 216.1 ± 5.1 | 229.2 ± 4.5 | 235.4 ± 4.1 | 242.2 ± 5.2 | <0.001 | |
Energy intake (kcal/day) | 1995.5 ± 12.1 | 2010.4 ± 13.9 | 2026 ± 11.5 | 2052 ± 12.4 | <0.001 | |
Carbohydrate (g/day) | 219.2 ± 6.4 | 226.2 ± 4.8 | 220.3 ± 5.1 | 244.1 ± 6.2 | <0.001 |
Apolipoprotein B Levels to Apolipoprotein A-I Ratio | |||||
---|---|---|---|---|---|
Q2 (n = 1925) | Q3 (n = 1924) | Q4 (n = 1923) | p-Trend | ||
Median (25th–75th) | 0.65 (0.62–0.69) | 0.80 (0.76–0.85) | 1.01 (0.95–1.10) | ||
Cancer mortality | Model 1 | 1.08 (1.03–1.13) | 1.44 (1.05–1.98) | 1.62 (1.38–1.78) | 0.002 |
Model 2 | 1.10 (0.87–1.30) | 1.35 (1.10–1.66) | 1.40 (1.25–1.93) | 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazidi, M.; Katsiki, N.; Mikhailidis, D.P.; Radenkovic, D.; Pella, D.; Banach, M., on behalf of the International Lipid Expert Panel (ILEP). Apolipoprotein B/Apolipoprotein A-I Ratio Is a Better Predictor of Cancer Mortality Compared with C-Reactive Protein: Results from Two Multi-Ethnic US Populations. J. Clin. Med. 2020, 9, 170. https://doi.org/10.3390/jcm9010170
Mazidi M, Katsiki N, Mikhailidis DP, Radenkovic D, Pella D, Banach M on behalf of the International Lipid Expert Panel (ILEP). Apolipoprotein B/Apolipoprotein A-I Ratio Is a Better Predictor of Cancer Mortality Compared with C-Reactive Protein: Results from Two Multi-Ethnic US Populations. Journal of Clinical Medicine. 2020; 9(1):170. https://doi.org/10.3390/jcm9010170
Chicago/Turabian StyleMazidi, Mohsen, Niki Katsiki, Dimitri P. Mikhailidis, Dina Radenkovic, Daniel Pella, and Maciej Banach on behalf of the International Lipid Expert Panel (ILEP). 2020. "Apolipoprotein B/Apolipoprotein A-I Ratio Is a Better Predictor of Cancer Mortality Compared with C-Reactive Protein: Results from Two Multi-Ethnic US Populations" Journal of Clinical Medicine 9, no. 1: 170. https://doi.org/10.3390/jcm9010170
APA StyleMazidi, M., Katsiki, N., Mikhailidis, D. P., Radenkovic, D., Pella, D., & Banach, M., on behalf of the International Lipid Expert Panel (ILEP). (2020). Apolipoprotein B/Apolipoprotein A-I Ratio Is a Better Predictor of Cancer Mortality Compared with C-Reactive Protein: Results from Two Multi-Ethnic US Populations. Journal of Clinical Medicine, 9(1), 170. https://doi.org/10.3390/jcm9010170