Potentials of Host-Directed Therapies in Tuberculosis Management
Abstract
:1. Introduction
2. mTOR Inhibition
3. Cathelicidin (LL37) Inducers
4. Adjunctive Defensin Therapy
5. Metformin
6. Statins
7. Additional Approaches
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global Tuberculosis Report 2018. Available online: https://www.who.int/tb/publications/global_report/en/ (accessed on 26 June 2019).
- Mittal, C.; Gupta, S. Noncompliance to DOTS: How it can be decreased. Indian J. Community Med. 2011, 36, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Verma, S.; Seranova, E.; Sarkar, S.; Kumar, D. Selective Autophagy and Xenophagy in Infection and Disease. Front. Cell Dev. Biol. 2018, 6, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerni, S.; Shafer, D.; To, K.; Venketaraman, V. Investigating the Role of Everolimus in mTOR Inhibition and Autophagy Promotion as a Potential Host-Directed Therapeutic Target in Mycobacterium tuberculosis Infection. J. Clin. Med. 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Nazio, F.; Strappazzon, F.; Antonioli, M.; Bielli, P.; Cianfanelli, V.; Bordi, M.; Gretzmeier, C.; Dengjel, J.; Piacentini, M.; Fimia, G.M.; et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 2013, 15, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Lachmandas, E.; Beigier-Bompadre, M.; Cheng, S.; Kumar, V.; van Laarhoven, A.; Wang, X.; Ammerdorffer, A.; Boutens, L.; de Jong, D.; Kanneganti, T.; et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defense against Mycobacterium tuberculosis in human and murine cells. Eur. J. Immunol. 2016, 46, 2574–2586. [Google Scholar] [CrossRef]
- Wallis, R.S.; Hafner, R. Advancing host-directed therapy for tuberculosis. Nat. Rev. Immunol. 2015, 15, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Pagan, A.J.; Levitte, S.; Berg, R.D.; Hernandez, L.; Zimmerman, J.; Tobin, D.M.; Ramakrishnan, L. mTOR deficiency reveals an immunological trade-off in innate resistance to mycobacterial infection in vivo. J. Immunol. 2016, 196 (Suppl. 1), 1. [Google Scholar]
- Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Jagannath, C.; Lindsey, D.R.; Dhandayuthapani, S.; Xu, Y.; Hunter, R.L.; Eissa, N.T. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat. Med. 2009, 15, 267–276. [Google Scholar] [CrossRef]
- Andersson, A.-M.; Andersson, B.; Lorell, C.; Raffetseder, J.; Larsson, M.; Blomgran, R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci. Rep. 2016, 6, 28171. [Google Scholar] [CrossRef] [Green Version]
- Mannick, J.B.; Del Giudice, G.; Lattanzi, M.; Valiante, N.M.; Praestgaard, J.; Huang, B.; Lonetto, M.A.; Maecker, H.T.; Kovarik, J.; Carson, S.; et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 2014, 6, 268. [Google Scholar] [CrossRef] [PubMed]
- Fijałkowska-Morawska, J.B.; Jagodzińska, M.; Nowicki, M. Pulmonary embolism and reactivation of tuberculosis during everolimus therapy in a kidney transplant recipient. Ann. Transplant. 2011, 16, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Subbian, S. Harnessing the mTOR Pathway for Tuberculosis Treatment. Front. Microbiol. 2018, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Pant, G.; Mitra, K.; Madan, J.; Chourasia, M.K.; Misra, A. Inhalable Particles Containing Rapamycin for Induction of Autophagy in Macrophages Infected with Mycobacterium tuberculosis. Mol. Pharm. 2014, 11, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Kahlenberg, J.M.; Kaplan, M.J. Little Peptide, Big Effects: The Role of LL-37 in Inflammation and Autoimmune Disease. J. Immunol. 2013, 191, 4895–4901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.-M.; Jo, E.-K. Antimicrobial Peptides in Innate Immunity against Mycobacteria. Immune Netw. 2011, 11, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Rivas-Santiago, B.; Hernandez-Pando, R.; Carranza, C.; Juarez, E.; Contreras, J.L.; Aguilar-Leon, D.; Torres, M.; Sada, E. Expression of Cathelicidin LL-37 during Mycobacterium tuberculosis Infection in Human Alveolar Macrophages, Monocytes, Neutrophils, and Epithelial Cells. Infect. Immun. 2007, 76, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Stephan, A.; Batinica, M.; Steiger, J.; Hartmann, P.; Zaucke, F.; Bloch, W.; Fabri, M. LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages. Immunology 2016, 148, 420–432. [Google Scholar] [CrossRef]
- Gupta, S.; Winglee, K.; Gallo, R.; Bishai, W.R. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis. J. Pathol. 2017, 242, 52–61. [Google Scholar] [CrossRef]
- Napier, B.A.; Burd, E.M.; Satola, S.W.; Cagle, S.M.; Ray, S.M.; Mcgann, P.; Pohl, J.; Lesho, E.P.; Weiss, D.S. Clinical Use of Colistin Induces Cross-Resistance to Host Antimicrobials in Acinetobacter baumannii. MBio 2013, 4, e00021-13. [Google Scholar] [CrossRef]
- Liu, P.T. Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- He, C.-S.; Yong, X.H.A.; Walsh, N.P.; Gleeson, M. Is there an optimal vitamin D status for immunity in athletes and military personnel? Exerc. Immunol. Rev. 2016, 22, 42–64. [Google Scholar] [PubMed]
- Yuk, J.-M.; Shin, D.-M.; Lee, H.-M.; Yang, C.-S.; Jin, H.S.; Kim, K.-K.; Lee, Z.-W.; Lee, S.-H.; Kim, J.-M.; Jo, E.-K. Vitamin D3 Induces Autophagy in Human Monocytes/Macrophages via Cathelicidin. Cell Host Microbe 2009, 6, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.T.; Stenger, S.; Tang, D.H.; Modlin, R.L. Cutting edge: Vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 2007, 179, 2060–2063. [Google Scholar] [CrossRef] [PubMed]
- Rook, G.A.; Steele, J.; Fraher, L.; Barker, S.; Karmali, R.; O’Riordan, J.; Stanford, J. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 1986, 57, 159–163. [Google Scholar] [PubMed]
- Musarurwa, C.; Zijenah, L.S.; Mhandire, D.Z.; Bandason, T.; Mhandire, K.; Chipiti, M.M.; Munjoma, M.W.; Mujaji, W.B. Higher serum 25-hydroxyvitamin D concentrations are associated with active pulmonary tuberculosis in hospitalised HIV infected patients in a low income tropical setting: A cross sectional study. BMC Pulm. Med. 2018, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Mily, A.; Rekha, R.S.; Kamal, S.M.M.; Arifuzzaman, A.S.M.; Rahim, Z.; Khan, L.; Haq, M.A.; Zaman, K.; Bergman, P.; Brighenti, S.; et al. Significant Effects of Oral Phenylbutyrate and Vitamin D3 Adjunctive Therapy in Pulmonary Tuberculosis: A Randomized Controlled Trial. PLoS ONE 2015, 10, e0138340. [Google Scholar] [CrossRef]
- Sudfeld, C.R.; Mugusi, F.; Aboud, S.; Nagu, T.J.; Wang, M.; Fawzi, W.W. Efficacy of vitamin D3 supplementation in reducing incidence of pulmonary tuberculosis and mortality among HIV-infected Tanzanian adults initiating antiretroviral therapy: Study protocol for a randomized controlled trial. Trials 2017, 18, 66. [Google Scholar] [CrossRef]
- Jarczak, J.; Kosciuczuk, E.M.; Lisowski, P.; Strzałkowska, N.; Jozwik, A.; Horbańczuk, J.O.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Defensins: Natural component of human innate immunity. Hum. Immunol. 2013, 74, 1069–1079. [Google Scholar] [CrossRef]
- Rivas-Santiago, B.; Schwander, S.K.; Sarabia, C.; Diamond, G.; Klein-Patel, M.E.; Hernández-Pando, R.; Ellner, J.J.; Sada, E. Human β-Defensin 2 Is Expressed and Associated with Mycobacterium tuberculosis during Infection of Human Alveolar Epithelial Cells. Infect. Immun. 2005, 73, 4505–4511. [Google Scholar] [CrossRef]
- Miyakawa, Y.; Ratnakar, P.; Rao, A.G.; Costello, M.L.; Mathieu-Costello, O.; Lehrer, R.I.; Catanzaro, A. In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect. Immun. 1996, 64, 926–932. [Google Scholar] [PubMed]
- Dong, H.; Lv, Y.; Zhao, D.; Barrow, P.; Zhou, X. Defensins: The Case for Their Use against Mycobacterial Infections. J. Immunol. Res. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Verma, I.; Khuller, G.K. Therapeutic Potential of Human Neutrophil Peptide 1 against Experimental Tuberculosis. Antimicrob. Agents Chemother. 2001, 45, 639–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas-Santiago, C.E.; Rivas-Santiago, B.; Leon, D.A.; Castañeda-Delgado, J.; Pando, R.H. Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis. Clin. Exp. Immunol. 2011, 164, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Lachmandas, E.; Eckold, C.; Böhme, J.; Koeken, V.A.C.M.; Marzuki, M.B.; Blok, B.; Arts, R.J.W.; Chen, J.; Teng, K.W.W.; Ratter, J.; et al. Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects. J. Infect. Dis. 2019, 220, 139–150. [Google Scholar] [CrossRef]
- Singhal, A.; Jie, L.; Kumar, P.; Hong, G.S.; Leow, M.K.-S.; Paleja, B.; Tsenova, L.; Kurepina, N.; Chen, J.; Zolezzi, F.; et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 2014, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Marupuru, S.; Senapati, P.; Pathadka, S.; Miraj, S.S.; Unnikrishnan, M.K.; Manu, M.K. Protective effect of metformin against tuberculosis infections in diabetic patients: An observational study of south Indian tertiary healthcare facility. Braz. J. Infect. Dis. 2017, 21, 312–316. [Google Scholar] [CrossRef]
- Lee, M.-C.; Chiang, C.-Y.; Lee, C.-H.; Ho, C.-M.; Chang, C.-H.; Wang, J.-Y.; Chen, S.-M. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: A nationwide cohort study with validated diagnostic criteria. PLoS ONE 2018, 13, e0205807. [Google Scholar] [CrossRef]
- Ma, S.; Ma, C.C.-H. Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily. Cytokine Growth Factor Rev. 2011, 22, 167–175. [Google Scholar] [CrossRef]
- Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.M.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin Therapy Reduces the Mycobacterium tuberculosis Burden in Human Macrophages and in Mice by Enhancing Autophagy and Phagosome Maturation. J. Infect. Dis. 2013, 209, 754–763. [Google Scholar] [CrossRef] [Green Version]
- Skerry, C.; Pinn, M.L.; Bruiners, N.; Pine, R.; Gennaro, M.L.; Karakousis, P.C. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother. 2014, 69, 2453–2457. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.A.; Choi, N.-K.; Seong, J.-M.; Heo, E.Y.; Koo, B.K.; Hwang, S.-S.; Park, B.-J.; Yim, J.-J.; Lee, C.-H. The effects of statin use on the development of tuberculosis among patients with diabetes mellitus. Int. J. Tuberc. Lung Dis. 2014, 18, 717–724. [Google Scholar] [CrossRef]
- Anisimova, Y.; Gelperina, S.; Peloquin, C.; Heifets, L. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages. J. Nanopart. Res. 2000, 2, 165–171. [Google Scholar] [CrossRef]
- Vibe, C.B.; Fenaroli, F.; Pires, D.; Wilson, S.R.; Bogoeva, V.; Kalluru, R.; Speth, M.; Anes, E.; Griffiths, G.; Hildahl, J. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology 2015, 10, 680–688. [Google Scholar] [CrossRef]
- Mathur, M.L. Role of vitamin A supplementation in the treatment of tuberculosis. Natl. Med. J. India 2007, 20, 16–21. [Google Scholar]
- Polena, H.; Boudou, F.; Tilleul, S.; Dubois-Colas, N.; Lecointe, C.; Rakotosamimanana, N.; Pelizzola, M.; Andriamandimby, S.F.; Raharimanga, V.; Charles, P.; et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci. Rep. 2016, 6, 33162. [Google Scholar] [CrossRef]
- Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.R.; Schultz, P.G.; et al. Auranofin Exerts Broad-Spectrum Bactericidal Activities by Targeting Thiol-Redox Homeostasis. Proc. Natl. Acad. Sci. USA 2015, 112, 4453–4458. [Google Scholar] [CrossRef]
- Lin, K.; Obrien, K.M.; Trujillo, C.; Wang, R.; Wallach, J.B.; Schnappinger, D.; Ehrt, S. Mycobacterium Tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense. PLoS Pathog. 2016, 12, e1005675. [Google Scholar] [CrossRef]
- Martineau, A.R.; Timms, P.M.; Bothamley, G.H.; Hanifa, Y.; Islam, K.; Claxton, A.P.; Packe, G.E.; Moore-Gillon, J.C.; Darmalingam, M.; Davidson, R.N.; et al. High-Dose Vitamin D3 during Intensive-Phase Antimicrobial Treatment of Pulmonary Tuberculosis: A Double-Blind Randomised Controlled Trial. Lancet 2011, 377, 242–250. [Google Scholar] [CrossRef]
- Daley, P.; Jagannathan, V.; John, K.R.; Sarojini, J.; Latha, A.; Vieth, R.; Suzana, S.; Jeyaseelan, L.; Christopher, D.J.; Smieja, M.; et al. Adjunctive Vitamin D for Treatment of Active Tuberculosis in India: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Infect. Dis. 2015, 15, 528–534. [Google Scholar] [CrossRef]
- Tukvadze, N.; Sanikidze, E.; Kipiani, M.; Hebbar, G.; Easley, K.A.; Shenvi, N.; Kempker, R.R.; Frediani, J.K.; Mirtskhulava, V.; Alvarez, J.A.; et al. High-Dose Vitamin D3 in Adults with Pulmonary Tuberculosis: A Double-Blind Randomized Controlled Trial. Am. J. Clin. Nutr. 2015, 102, 1059–1069. [Google Scholar] [CrossRef]
- Hasan, Z.; Salahuddin, N.; Rao, N.; Aqeel, M.; Mahmood, F.; Ali, F.; Ashraf, M.; Rahman, F.; Mahmood, S.; Islam, M.; et al. Change in serum CXCL10 levels during anti-tuberculosis treatment depends on vitamin D status [Short Communication]. Int. J. Tuberc. Lung Dis. 2014, 18, 466–469. [Google Scholar] [CrossRef]
- Salahuddin, N.; Ali, F.; Hasan, Z.; Rao, N.; Aqeel, M.; Mahmood, F. Vitamin D Accelerates Clinical Recovery from Tuberculosis: Results of the SUCCINCT Study [Supplementary Cholecalciferol in Recovery from Tuberculosis]. A Randomized, Placebo-Controlled, Clinical Trial of Vitamin D Supplementation in Patients with Pulmonary Tuberculosis’. BMC Infect. Dis. 2013, 13, 22. [Google Scholar]
- Ralph, A.P.; Waramori, G.; Pontororing, G.J.; Kenangalem, E.; Wiguna, A.; Tjitra, E.; Sandjaja; Lolong, D.B.; Yeo, T.W.; Chatfield, M.D.; et al. L-Arginine and Vitamin D Adjunctive Therapies in Pulmonary Tuberculosis: A Randomised, Double-Blind, Placebo-Controlled Trial. PLoS ONE 2013, 8, e70032. [Google Scholar] [CrossRef]
- Ma, Y.; Pang, Y.; Shu, W.; Liu, Y.-H.; Ge, Q.-P.; Du, J.; Li, L.; Gao, W.-W. Metformin Reduces the Relapse Rate of Tuberculosis Patients with Diabetes Mellitus: Experiences from 3-Year Follow-Up. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1259–1263. [Google Scholar] [CrossRef]
- Novita, B.D.; Soediono, E.I.; Nugraha, J. Metformin associated inflammation levels regulation in type 2 diabetes mellitus-tuberculosis coinfection patients—A case report. Indian J. Tuberc. 2018, 65, 345–349. [Google Scholar] [CrossRef]
- Novita, B.D.; Ali, M.; Pranoto, A.; Soediono, E.I.; Mertaniasih, N.M. Metformin induced autophagy in diabetes mellitus—Tuberculosis co-infection patients: A case study. Indian J. Tuberc. 2019, 66, 64–69. [Google Scholar] [CrossRef]
- Degner, N.R.; Wang, J.-Y.; Golub, J.E.; Karakousis, P.C. Metformin Use Reverses the Increased Mortality Associated With Diabetes Mellitus During Tuberculosis Treatment. Clin. Infect. Dis. 2017, 66, 198–205. [Google Scholar] [CrossRef]
Candidate | Description | Results | Remarks | References |
---|---|---|---|---|
1. Clinical Studies | ||||
Everolimus, Auranofin, Vitamin D, CC-11050 | Combination therapy of HDT with DOTS drug regimen, followed with a modified DOTs protocol for 4 months with the intent to improve efficacy and outcomes of TB | Active, not enrolling. | Randomized, phase 2 clinical trial in South Africa | ClinicalTrials.gov Identifier: NCT02968927 [48,49] |
Azithromycin | Immunomodulatory, adjunctive HDT therapy on top of the current DOTs regimen to reduce excessive inflammation, tissue degradation, and improve clinical outcomes of TB | Active, enrolling | Prospective, randomized, phase 2 pilot study in the Netherlands | ClinicalTrials.gov Identifier: NCT03160638 |
N-acetylcysteine | N-acetylcysteine in conjunction with rifampicin, isoniazid, pyrazinamide, ethambutol to provide anti-TB and antioxidative effects for patients with active HIV/TB infections | Active, enrolling | Randomized, phase 2 clinical trial in Brazil | ClinicalTrials.gov Identifier: NCT03281226 |
Vitamin D | Adjunctive vitamin D therapy in combination to standard antibiotic treatment for pulmonary tuberculosis to potentially enhance patient response | Vitamin D supplementation did not significantly reduce sputum conversion time among study population | Double-blind, randomized phase 3 clinical trial in the United Kingdom | ClinicalTrials.gov Identifier: NCT00419068 [50] |
Vitamin D supplementation to standard DOTs therapy with the hopes of quicker patient recovery times (demonstrated by sputum culture conversion) | Vitamin D supplementation did not significantly reduce sputum conversion time | Double-blind, randomized, placebo-controlled phase 3 clinical trial in South India | ClinicalTrials.gov Identifier: NCT00366470 [51] | |
Effects of adjunctive vitamin D on host immunity with respect to TB and response to appropriate treatment | High-dose vitamin D3 corrected deficiency among patient, but did not improve TB clearance over the course of the trial | Double-blind, randomized, controlled phase 2 clinical trial in the United States | ClinicalTrials.gov Identifier: NCT00918086 [52] | |
Determining if replacement of vitamin D in deficient patients with active TB affects clinical outcome | Vitamin D in high doses resulted in improvement in all TB patients, including those with vitamin D deficiencies. | Randomized, placebo-controlled clinical trial in Pakistan | ClinicalTrials.gov Identifier: NCT01130311 [53,54] | |
Vitamin D and L-arginine supplementation in diagnosed TB patients in order to improve clinical outcomes and responses to pulmonary TB | With the doses administered, neither vitamin D nor L-arginine supplementation affected TB outcomes | Randomized, double-blind, placebo-controlled phase 3 clinical trial in Indonesia | ClinicalTrials.gov Identifier: NCT00677339 [55] | |
Vitamin D3 and phenylbutyrate supplementation to standard short course DOTS therapy in order to improve recovery times and improve clinical outcomes in newly diagnosed TB patients | Beneficial effects towards patient recovery has been observed with phenylbutyrate, vitamin D3, or combination of phenylbutyrate and vitamin D3 supplementation with standard short-course therapy | Randomized, double-blind, placebo-controlled, 4-arm Phase 2 clinical trial in Bangladesh | ClinicalTrials.gov Identifier: NCT01580007 [28] | |
2. Additional Studies | ||||
Metformin | Multiple studies investigating the supplementation of metformin to existing standard anti-tuberculosis therapies, specifically in application to diabetic-TB patients | Metformin as an adjunctive therapy for diabetic TB patients needs to be understood further, even at the clinical level, due to inconsistent outcome reporting across studies | Retrospective cohort or case control studies. While there are reports of positive effects of metformin on active TB infections, there has been reports of no significant benefits in utilizing metformin as an adjunctive therapy. | [38,39,56,57,58,59] |
Statins | Studies sought to understand the usage of cholesterol-lowering lipids (i.e., statins) and outcomes in regard to TB infections | Statins show beneficial effects as adjunctive therapy in TB infected M. marinum TB, and have been observed to shorten the culture negativity, reduce tissue pathology, and enhance bacterial killing along standard TB therapy. However, statins did not prevent TB progression in individuals who were newly diagnosed with type 2 diabetes mellitus. | Further studies will need to be conducted in order to understand the effects of statins and other potential cholesterol-lowering drugs on recovery times and outcome improvement in TB infections. | [42] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dara, Y.; Volcani, D.; Shah, K.; Shin, K.; Venketaraman, V. Potentials of Host-Directed Therapies in Tuberculosis Management. J. Clin. Med. 2019, 8, 1166. https://doi.org/10.3390/jcm8081166
Dara Y, Volcani D, Shah K, Shin K, Venketaraman V. Potentials of Host-Directed Therapies in Tuberculosis Management. Journal of Clinical Medicine. 2019; 8(8):1166. https://doi.org/10.3390/jcm8081166
Chicago/Turabian StyleDara, Yash, Doron Volcani, Kush Shah, Kevin Shin, and Vishwanath Venketaraman. 2019. "Potentials of Host-Directed Therapies in Tuberculosis Management" Journal of Clinical Medicine 8, no. 8: 1166. https://doi.org/10.3390/jcm8081166
APA StyleDara, Y., Volcani, D., Shah, K., Shin, K., & Venketaraman, V. (2019). Potentials of Host-Directed Therapies in Tuberculosis Management. Journal of Clinical Medicine, 8(8), 1166. https://doi.org/10.3390/jcm8081166