Next Article in Journal
Comparative Study between an Immediate Loading Protocol Using the Digital Workflow and a Conventional Protocol for Dental Implant Treatment: A Randomized Clinical Trial
Next Article in Special Issue
Effect of Short Term Intensive Lifestyle Intervention on Hepatic Steatosis Indexes in Adults with Obesity and/or Type 2 Diabetes
Previous Article in Journal
Virtual Enactment Effect on Memory in Young and Aged Populations: A Systematic Review
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle

Lysosomal Acid Lipase as a Molecular Target of the Very Low Carbohydrate Ketogenic Diet in Morbidly Obese Patients: The Potential Effects on Liver Steatosis and Cardiovascular Risk Factors

1
Internal Medicine, Department of Medicine, Università degli Studi di Perugia, 06129 Perugia, Italy
2
Hepatology, Gastroenterology and Nutrition Unit, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
3
General Surgery, “Santa Maria della Misericordia” Hospital, 06129 Perugia, Italy
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2019, 8(5), 621; https://doi.org/10.3390/jcm8050621
Received: 19 April 2019 / Revised: 1 May 2019 / Accepted: 3 May 2019 / Published: 7 May 2019
(This article belongs to the Special Issue Non-Alcoholic Steatohepatitis (NASH))
  |  
PDF [1763 KB, uploaded 7 May 2019]
  |     |  

Abstract

A very low carbohydrate ketogenic diet (VLCKD) is an emerging technique to induce a significant, well-tolerated, and rapid loss of body weight in morbidly obese patients. The low activity of lysosomal acid lipase (LAL) could be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is a common feature in morbidly obese patients. Fifty-two obese patients suitable for a bariatric surgery intervention underwent a 25-day-long VLCKD. The biochemical markers of glucose and lipid metabolism, and flow-mediated dilation (FMD) of the brachial artery were measured before and after VLCKD. LAL activity was measured using the dried blood spot technique in 20 obese patients and in a control group of 20 healthy, normal-weight subjects. After VLCKD, we observed a significant reduction in body mass index, fasting glucose, insulinemia, and lipid profile parameters. No significant variation in FMD was observed. The number of patients with severe liver steatosis significantly decreased. LAL activity significantly increased, although the levels were not significantly different as compared to the control group. In conclusion, VLCKD induces the activity of LAL in morbidly obese subjects and reduces the secretion of all circulating lipoproteins. These effects could be attributed to the peculiar composition of the diet, which is particularly poor in carbohydrates and relatively rich in proteins. View Full-Text
Keywords: ketogenic diet; morbid obesity; lysosomal acid lipase; non-alcoholic fatty liver disease; lipid metabolism ketogenic diet; morbid obesity; lysosomal acid lipase; non-alcoholic fatty liver disease; lipid metabolism
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ministrini, S.; Calzini, L.; Nulli Migliola, E.; Ricci, M.A.; Roscini, A.R.; Siepi, D.; Tozzi, G.; Daviddi, G.; Martorelli, E.-E.; Paganelli, M.T.; Lupattelli, G. Lysosomal Acid Lipase as a Molecular Target of the Very Low Carbohydrate Ketogenic Diet in Morbidly Obese Patients: The Potential Effects on Liver Steatosis and Cardiovascular Risk Factors. J. Clin. Med. 2019, 8, 621.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Clin. Med. EISSN 2077-0383 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top