Renal Failure Impact on the Outcomes of ST-Segment Elevation Myocardial Infarction Patients Due to a Left Main Coronary Culprit Lesion Treated Using a Primary Percutaneous Coronary Intervention
Abstract
:1. Introduction
2. Materials and Methods
rSS = residual SYNTAX Score
bSS = baseline SYNTAX Score
2.1. Baseline Blood Investigations
2.2. Statistical Analysis
3. Results
Effect of Low eGFR on Mortality
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bae, E.H.; Lim, S.Y.; Cho, K.H.; Choi, J.S.; Kim, C.S.; Park, J.W.; Ma, S.K.; Jeong, M.H.; Kim, S.W. GFR and Cardiovascular Outcomes After Acute Myocardial Infarction: Results from the Korea Acute Myocardial Infarction Registry. Am. J. Kidney Dis. 2012, 59, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Olinic, D.M.; Spinu, M.; Olinic, M.; Homorodean, C.; Tataru, D.A.; Liew, A.; Schernthaner, G.H.; Stanek, A.; Fowkes, G.; Catalano, M. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int. Angiol. 2018, 37, 327–334. [Google Scholar] [PubMed]
- Mathew, R.O.; Bangalore, S.; Lavelle, M.P.; Pellikka, P.A.; Sidhu, M.S.; Boden, W.E.; Asif, A. Diagnosis and management of atherosclerotic cardiovascular disease in chronic kidney disease: A review. Kidney Int. 2017, 91, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Van Domburg, R.T.; Hoeks, S.E.; Welten, G.M.; Chonchol, M.; Elhendy, A.; Poldermans, D. Renal insufficiency and mortality in patients with known or suspected coronary artery disease. J. Am. Soc. Nephrol. 2008, 19, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.G.; Varagunam, M.; Sawhney, V.; Ahuja, K.R.; Salahuddin, N.; De Palma, R.; Rothman, M.T.; Wragg, A.; Yaqoob, M.M.; Knight, C.J. Mild chronic kidney disease is an independent predictor of long-term mortality after emergency angiography and primary percutaneous intervention in patients with ST-elevation myocardial infarction. Heart 2012, 98, 42–47. [Google Scholar] [CrossRef]
- Volodarskiy, A.; Kumar, S.; Amin, S.; Bangalore, S. Optimal treatment strategies in patients with chronic kidney disease and coronary artery disease. Am. J. Med. 2016, 129, 1288–1298. [Google Scholar] [CrossRef]
- Homorodean, C.; Iancu, A.C.; Leucuţa, D.; Balanescu, S.; Dregoesc, I.M.; Spinu, M.; Ober, M.; Tataru, D.; Olinic, M.; Bindea, D.; et al. New Predictors of Early and Late Outcomes after Primary Percutaneous Coronary Intervention in Patients with ST-Segment Elevation Myocardial Infarction and Unprotected Left Main Coronary Artery Culprit Lesion. J. Interv. Cardiol. 2019, 2019, 9. [Google Scholar] [CrossRef]
- Cai, Q.; Mukku, V.K.; Ahmad, M. Coronary artery disease in patients with chronic kidney disease: A clinical update. Curr. Cardiol. Rev. 2013, 9, 331–339. [Google Scholar] [CrossRef]
- Kato, K.; Yonetsu, T.; Jia, H.; Abtahian, F.; Vergallo, R.; Hu, S.; Tian, J.; Kim, S.J.; Lee, H.; McNulty, I.; et al. Nonculprit coronary plaque characteristics of chronic kidney disease. Circ. Cardiovasc. Imaging 2013, 6, 448–456. [Google Scholar] [CrossRef]
- Giustino, G.; Mehran, R.; Serruys, P.; Sabik, J.F., 3rd; Milojevic, M.; Simonton, C.A.; Puskas, J.D.; Kandzari, D.E.; Morice, M.C.; Taggart, D.P.; et al. Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease EXCEL Trial. J. Am. Coll. Cardiol. Intv. 2018, 72, 754–765. [Google Scholar] [CrossRef]
- Patel, N.; De Maria, G.L.; Kassimis, G.; Rahimi, K.; Bennett, D.; Ludman, P.; Banning, A.P. Outcomes after emergency percutaneous coronary intervention in patients with unprotected left main stem occlusion. The BCIS national audit of percutaneous coronary intervention 6-year experience. J. Am. Coll. Cardiol. Intv. 2014, 7, 969–980. [Google Scholar] [CrossRef]
- Baek, J.Y.; Seo, S.M.; Park, H.J.; Kim, P.J.; Park, M.W.; Koh, Y.S.; Chang, K.Y.; Jeong, M.H.; Park, S.J.; Seung, K.B. Clinical Outcomes and Predictors of Unprotected Left Main Stem Culprit Lesions in Patients with Acute ST Segment Elevation Myocardial Infarction. Catheter Cardiovasc. Interv. 2014, 83, E243–E250. [Google Scholar] [CrossRef]
- Cheng, I.C.; Hsueh, S.K.; Lee, F.Y.; Wu, C.J.; Fang, C.Y.; Sheu, J.J.; Chen, S.M.; Yang, C.H.; Hsieh, Y.K.; Chen, M.C.; et al. Clinical presentation and prognostic factors of patients with acute ST-Segment elevation myocardial infarction following emergent revascularization for left main coronary artery obstruction. Circ. J. 2008, 72, 1598–1604. [Google Scholar] [CrossRef]
- Yap, J.; Singh, G.D.; Kim, J.S.; Soni, K.; Chua, K.; Neo, A.; Koh, C.H.; Armstrong, E.J.; Waldo, S.W.; Shunk, K.A.; et al. Outcomes of primary percutaneous coronary intervention in acute myocardial infarction due to unprotected left main thrombosis: The Asia-Pacific Left Main ST-Elevation Registry (ASTER). J. Interv. Cardiol. 2018, 31, 129–135. [Google Scholar] [CrossRef]
- Rokos, I.C.; French, W.J.; Mattu, A.; Nichol, G.; Farkouh, M.E.; Reiffel, J.; Stone, G.W. Appropriate cardiac cath lab activation: optimizing electrocardiogram interpretation and clinical decision-making for acute ST-elevation myocardial infarction. Am. Heart J. 2010, 160, 995–1003. [Google Scholar] [CrossRef]
- Rentrop, K.P.; Cohen, M.; Blanke, H.; Phillips, R.A. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Am. Coll. Cardiol. 1985, 5, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Genereux, P.; Campos, C.M.; Yadav, M.; Palmerini, T.; Caixeta, A.; Xu, K.; Francese, D.P.; Dangas, G.D.; Mehran, R.; Leon, M.B.; et al. Reasonable incomplete revascularisation after percutaneous coronary intervention: the SYNTAX Revascularisation Index. EuroIntervention 2015, 11, 634–642. [Google Scholar] [CrossRef] [PubMed]
- KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Summary of Recommendation Statements. Kidney Int. Suppl. 2013, 3, 5–14. [CrossRef]
- Cutlip, D.E.; Windecker, S.; Mehran, R.; Boam, A.; Cohen, D.J.; van Es, G.A.; Steg, P.G.; Morel, M.A.; Mauri, L.; Vranckx, P.; et al. Clinical end points in coronary stent trials: A case for standardized definitions. Circulation 2007, 115, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Ninomiya, T.; Sumiyoshi, S.; Fujii, H.; Doi, Y.; Hirakata, H.; Tsuruya, K.; Iida, M.; Kiyohara, Y.; Sueishi, K. Association of kidney function with coronary atherosclerosis and calcification in autopsy samples from Japanese elders: the Hisayama study. Am. J. Kidney Dis. 2010, 55, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Coskun, U.; Orta Kilickesmez, K.; Abaci, O.; Kocas, C.; Bostan, C.; Yildiz, A.; Baskurt, M.; Arat, A.; Ersanli, M.; Gurmen, T. The relationship between chronic kidney disease and SYNTAX score. Angiology 2011, 62, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Selzer, F.; Faxon, D.P.; Laskey, W.K.; Cohen, H.A.; Slater, J.; Detre, K.M.; Wilensky, R.L. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 2005, 111, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Yajima, J.; Oikawa, Y.; Matsuno, S.; Funada, R.; Tanaka, S.; Fukamachi, D.; Suzuki, S.; Aizawa, T.; Yamashita, T. Role of arterial stiffness and impaired renal function in the progression of new coronary lesions after percutaneous coronary intervention. Cardiovasc. Interv. Ther. 2013, 28, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Olinic, D.M.; Spinu, M.; Homorodean, C.; Ober, M.; Olinic, M. Real-Life Benefit of OCT Imaging for Optimizing PCI Indications, Strategy, and Results. J. Clin. Med. 2019, 8, 437. [Google Scholar] [CrossRef]
- Spînu, M.; Olinic, D.M.; Olinic, M.; Homorodean, C. In vivo imaging of complicated atherosclerotic plaque role of optical coherence tomography (OCT). Rom. J. Morphol. Embryol. 2018, 59, 469–478. [Google Scholar]
- Marc, M.C.; Iancu, A.C.; Ober, C.D.; Homorodean, C.; Bãlãnescu, Ş.; Sitar, A.V.; Bolboacã, S.; Dregoesc, I.M. Pre-revascularization coronary wedge pressure as marker of adverse long-term left ventricular remodelling in patients with acute ST-segment elevation myocardial infarction. Sci. Rep. 2018, 8, 1897. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.L.; Masoudi, F.A.; Shlipak, M.G.; Krumholz, H.M.; Parikh, C.R. Renal impairment predicts long-term mortality risk after acute myocardial infarction. J. Am. Soc. Nephrol. 2008, 19, 141–150. [Google Scholar] [CrossRef]
- Lehman, L.W.; Saeed, M.; Moody, G.; Mark, R. Hypotension as a Risk Factor for Acute Kidney Injury in ICU Patients. Comput. Cardiol. 2010, 37, 1095–1098. [Google Scholar]
- Uchino, S. Creatinine. Curr. Opin. Crit. Care 2010, 16, 562–567. [Google Scholar] [CrossRef]
- KDIGO Clinical Practice Guideline for Acute Kidney Injury. Summary of Recommendation Statements. Kidney Int. Suppl. 2012, 2, 8–12.
- Lee, J.M.; Kang, J.; Lee, E.; Hwang, D.; Rhee, T.M.; Park, J.; Kim, H.L.; Lee, S.E.; Han, J.K.; Yang, H.M.; et al. Chronic kidney disease in the 2nd generation drug-eluting stent era: pooled analysis of the Korean Multicenter Drug- Eluting Stent Registry. J. Am. Coll. Cardiol. Intv. 2016, 9, 2097–2109. [Google Scholar] [CrossRef] [PubMed]
- Homorodean, C.; Olinic, D.; Nedevschi, S.; Olinic, N. Templates implementation for structured DICOM diagnosis reporting in echocardiography. Comput. Cardiol. 2005, 32, 379–382. [Google Scholar]
- Olinic, D.; Nedevschi, S.; Feier, C.; Gal, Z.; Olinic, N. A structured medical text field of DICOM 3.0 transesophageal echocardiography image file for database implementation. In Proceedings of the 26th Annual Meeting on Computers in Cardiology, Computing in Cardiology Series, Hannover, Germany, 26–29 September 1999. [Google Scholar]
CKD n = 40 (%) | Non-CKD n = 41 (%) | p | |
---|---|---|---|
Age (SD) | 70.4 (11.27) | 59.8 (13.7) | <0.001 |
Male | 29 (73.5) | 30 (72.5) | 1 |
Diabetes | 18 (45) | 9 (22) | 0.035 |
Smoker (or Former) | 20 (50) | 22 (53) | 0.825 |
HTA | 29 (72.5) | 21 (51.2) | 0.068 |
Hypercolesterolemia | 29 (72.5) | 21 (51.2) | 0.068 |
Prior MI | 13 (32.5) | 2 (4.9) | 0.002 |
Prior PCI | 4 (10) | 2 (4.9) | 0.432 |
EF < 30% | 22 (55) | 10 (24.4) | 0.005 |
Cardiogenic Shock | 24 (60) | 16 (39) | 0.059 |
CPR | 13 (32.5) | 15 (36.6) | 0.816 |
CKD n = 40 (%) | Non-CKD n = 41 (%) | p | |
---|---|---|---|
TIMI 0/1 flow | 7 (17.5) | 12 (29.3) | 0.211 |
LM collaterals in TIMI 0/1 | 2 (28.6) | 8 (66.7) | 0.109 |
Multivessel Disease | 35 (87.5) | 21 (51.2) | <0.001 |
bSYNTAX | 30.5 (14.25) | 23 (18.5) | 0.015 |
rSYNTAX | 8.5 (10.8) | 0 (3.5) | <0.001 |
SRI | 67.8 (34.6) | 100 (12.5) | <0.001 |
LM Bifurcation | 28 (70) | 23 (56.1) | 0.195 |
Two-Stents Technique | 5 (12.5) | 2 (4.9) | 0.084 |
No. of Stents (SD) | 1.8 (1.1) | 1.4 (0.6) | 0.066 |
Final Diameter (mm) (SD) | 3.86 (0.45) | 3.95 (0.53) | 0.423 |
Multivessel PCI | 15 (37.5) | 13 (31.7) | 0.584 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Cardiogenic Shock | 5.75 | 2.19–15.10 | <0.001 | 3.48 | 1.22–9.92 | 0.020 |
TIMI 3/2 vs. 0/1 | 0.27 | 0.091–0.81 | 0.020 | 0.22 | 0.06–0.83 | 0.025 |
eGFR | 0.97 | 0.95–0.99 | 0.005 | 0.97 | 0.96–0.99 | 0.021 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Left Ventricle EF < 30% | 2.75 | 1.09–6.89 | 0.031 | 1.99 | 0.74–5.33 | 0.168 |
DM | 1.25 | 0.49–3.16 | 0.6 | 0.81 | 0.28–2.31 | 0.694 |
Prior MI | 2.16 | 0.69–6.80 | 0.18 | 1.18 | 0.33–4.19 | 0.796 |
eGFR | 0.97 | 0.95–0.99 | 0.005 | 0.97 | 0.96–0.99 | 0.027 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homorodean, C.; Iancu, A.C.; Dregoesc, I.M.; Spînu, M.; Ober, M.C.; Tãtaru, D.; Leucuţa, D.; Olinic, M.; Olinic, D.M. Renal Failure Impact on the Outcomes of ST-Segment Elevation Myocardial Infarction Patients Due to a Left Main Coronary Culprit Lesion Treated Using a Primary Percutaneous Coronary Intervention. J. Clin. Med. 2019, 8, 565. https://doi.org/10.3390/jcm8040565
Homorodean C, Iancu AC, Dregoesc IM, Spînu M, Ober MC, Tãtaru D, Leucuţa D, Olinic M, Olinic DM. Renal Failure Impact on the Outcomes of ST-Segment Elevation Myocardial Infarction Patients Due to a Left Main Coronary Culprit Lesion Treated Using a Primary Percutaneous Coronary Intervention. Journal of Clinical Medicine. 2019; 8(4):565. https://doi.org/10.3390/jcm8040565
Chicago/Turabian StyleHomorodean, Cãlin, Adrian Corneliu Iancu, Ioana Mihaela Dregoesc, Mihai Spînu, Mihai Claudiu Ober, Dan Tãtaru, Daniel Leucuţa, Maria Olinic, and Dan Mircea Olinic. 2019. "Renal Failure Impact on the Outcomes of ST-Segment Elevation Myocardial Infarction Patients Due to a Left Main Coronary Culprit Lesion Treated Using a Primary Percutaneous Coronary Intervention" Journal of Clinical Medicine 8, no. 4: 565. https://doi.org/10.3390/jcm8040565
APA StyleHomorodean, C., Iancu, A. C., Dregoesc, I. M., Spînu, M., Ober, M. C., Tãtaru, D., Leucuţa, D., Olinic, M., & Olinic, D. M. (2019). Renal Failure Impact on the Outcomes of ST-Segment Elevation Myocardial Infarction Patients Due to a Left Main Coronary Culprit Lesion Treated Using a Primary Percutaneous Coronary Intervention. Journal of Clinical Medicine, 8(4), 565. https://doi.org/10.3390/jcm8040565