Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury
Abstract
:1. Introduction
2. Disparities between Old and New in the Multiple-Scale Neural Plasticity of Brain-Body Reorganization Following Spinal Cord Injury (SCI)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pazzaglia, M.; Zantedeschi, M. Plasticity and Awareness of Bodily Distortion. Neural Plast. 2016, 2016, 9834340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, R.A.; Griffin, V.D.; Evans, C.B.; Grana, A.S. Temporal relationships between changes in phantom limb pain intensity and changes in surface electromyogram of the residual limb. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 1992, 13, 71–77. [Google Scholar] [CrossRef]
- Cook, A.W.; Druckemiller, W.H. Phantom limb in paraplegic patients; report of two cases and an analysis of its mechanism. J. Neurosurg. 1952, 9, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Hirstein, W. The perception of phantom limbs. The D. O. Hebb lecture. Brain 1998, 121 Pt 9, 1603–1630. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.W.; Finn, S.B.; Miller, M.E. Reversal of phantom pain and hand-to-face remapping after brachial plexus avulsion. Ann. Clin. Transl. Neurol. 2016, 3, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, M.; Galli, G.; Lucci, G.; Scivoletto, G.; Molinari, M.; Haggard, P. Phantom limb sensations in the ear of a patient with a brachial plexus lesion. Cortex 2019, 117, 385–395. [Google Scholar] [CrossRef]
- Henderson, L.A.; Gustin, S.M.; Macey, P.M.; Wrigley, P.J.; Siddall, P.J. Functional reorganization of the brain in humans following spinal cord injury: Evidence for underlying changes in cortical anatomy. J. Neurosci. 2011, 31, 2630–2637. [Google Scholar] [CrossRef]
- Hoffman, L.R.; Field-Fote, E.C. Cortical reorganization following bimanual training and somatosensory stimulation in cervical spinal cord injury: A case report. Phys. Ther. 2007, 87, 208–223. [Google Scholar] [CrossRef]
- Cramer, S.C.; Lastra, L.; Lacourse, M.G.; Cohen, M.J. Brain motor system function after chronic, complete spinal cord injury. Brain 2005, 128, 2941–2950. [Google Scholar] [CrossRef]
- Curt, A.; Bruehlmeier, M.; Leenders, K.L.; Roelcke, U.; Dietz, V. Differential effect of spinal cord injury and functional impairment on human brain activation. J. Neurotrauma 2002, 19, 43–51. [Google Scholar] [CrossRef]
- Jain, N.; Catania, K.C.; Kaas, J.H. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 1997, 386, 495–498. [Google Scholar] [CrossRef]
- Endo, T.; Spenger, C.; Tominaga, T.; Brene, S.; Olson, L. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 2007, 130, 2951–2961. [Google Scholar] [CrossRef]
- Ghosh, A.; Sydekum, E.; Haiss, F.; Peduzzi, S.; Zorner, B.; Schneider, R.; Baltes, C.; Rudin, M.; Weber, B.; Schwab, M.E. Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J. Neurosci. 2009, 29, 12210–12219. [Google Scholar] [CrossRef] [Green Version]
- Pons, T.P.; Garraghty, P.E.; Ommaya, A.K.; Kaas, J.H.; Taub, E.; Mishkin, M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 1991, 252, 1857–1860. [Google Scholar] [CrossRef] [Green Version]
- Merzenich, M.M.; Nelson, R.J.; Stryker, M.P.; Cynader, M.S.; Schoppmann, A.; Zook, J.M. Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 1984, 224, 591–605. [Google Scholar] [CrossRef]
- Jain, N.; Qi, H.X.; Collins, C.E.; Kaas, J.H. Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. J. Neurosci. 2008, 28, 11042–11060. [Google Scholar] [CrossRef]
- Florence, S.L.; Taub, H.B.; Kaas, J.H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 1998, 282, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.G.; Pons, T.P. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 1998, 282, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Paqueron, X.; Leguen, M.; Rosenthal, D.; Coriat, P.; Willer, J.C.; Danziger, N. The phenomenology of body image distortions induced by regional anaesthesia. Brain 2003, 126, 702–712. [Google Scholar] [CrossRef]
- Bruehlmeier, M.; Dietz, V.; Leenders, K.L.; Roelcke, U.; Missimer, J.; Curt, A. How does the human brain deal with a spinal cord injury? Eur. J. Neurosci. 1998, 10, 3918–3922. [Google Scholar] [CrossRef]
- Corbetta, M.; Burton, H.; Sinclair, R.J.; Conturo, T.E.; Akbudak, E.; McDonald, J.W. Functional reorganization and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery. Proc. Natl. Acad. Sci. USA 2002, 99, 17066–17071. [Google Scholar] [CrossRef] [Green Version]
- Lotze, M.; Laubis-Herrmann, U.; Topka, H. Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury. Restor. Neurol. Neurosci. 2006, 24, 97–107. [Google Scholar]
- Moore, C.I.; Stern, C.E.; Dunbar, C.; Kostyk, S.K.; Gehi, A.; Corkin, S. Referred phantom sensations and cortical reorganization after spinal cord injury in humans. Proc. Natl. Acad. Sci. USA 2000, 97, 14703–14708. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, J.P. Plasticity of adult sensorimotor representations. Curr. Opin. Neurobiol. 1995, 5, 749–754. [Google Scholar] [CrossRef]
- Courtine, G.; Bunge, M.B.; Fawcett, J.W.; Grossman, R.G.; Kaas, J.H.; Lemon, R.; Maier, I.; Martin, J.; Nudo, R.J.; Ramon-Cueto, A.; et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat. Med. 2007, 13, 561–566. [Google Scholar] [CrossRef]
- Maynard, F.M., Jr.; Bracken, M.B.; Creasey, G.; Ditunno, J.F., Jr.; Donovan, W.H.; Ducker, T.B.; Garber, S.L.; Marino, R.J.; Stover, S.L.; Tator, C.H.; et al. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord 1997, 35, 266–274. [Google Scholar] [CrossRef]
- Tator, C.H. Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 1998, 42, 696–707. [Google Scholar] [CrossRef]
- Fuentes, C.T.; Pazzaglia, M.; Longo, M.R.; Scivoletto, G.; Haggard, P. Body image distortions following spinal cord injury. J. Neurol. Neurosurg. Psychiatry 2013, 84, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, M.; Galli, G.; Lewis, J.W.; Scivoletto, G.; Giannini, A.M.; Molinari, M. Embodying functionally relevant action sounds in patients with spinal cord injury. Sci. Rep. 2018, 8, 15641. [Google Scholar] [CrossRef]
- Standal, O.F. Re-embodiment: Incorporation through embodied learning of wheelchair skills. Med. Health Care Philos. 2011, 14, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, C. Becoming en-wheeled: The situated accomplishment of re-embodiment as a wheelchair user after spinal cord injury. Disabil. Soc. 2008, 23, 691–704. [Google Scholar] [CrossRef]
- Pazzaglia, M.; Galli, G.; Scivoletto, G.; Molinari, M. A Functionally Relevant Tool for the Body following Spinal Cord Injury. PLoS ONE 2013, 8, e58312. [Google Scholar] [CrossRef] [Green Version]
- Arnhoff, F.; Mehl, M. Body image deterioration in paraplegia. J. Nerv. Ment. Dis. 1963, 137, 88–92. [Google Scholar] [CrossRef]
- Higuchi, T.; Hatano, N.; Soma, K.; Imanaka, K. Perception of spatial requirements for wheelchair locomotion in experienced users with tetraplegia. J Physiol. Anthr. 2009, 28, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Lenggenhager, B.; Pazzaglia, M.; Scivoletto, G.; Molinari, M.; Aglioti, S.M. The sense of the body in individuals with spinal cord injury. PLoS ONE 2012, 7, e50757. [Google Scholar] [CrossRef] [Green Version]
- Lenggenhager, B.; Scivoletto, G.; Molinari, M.; Pazzaglia, M. Restoring tactile awareness through the rubber hand illusion in cervical spinal cord injury. Neurorehabil. Neural Repair 2013, 27, 704–708. [Google Scholar] [CrossRef]
- Pazzaglia, M.; Haggard, P.; Scivoletto, G.; Molinari, M.; Lenggenhager, B. Pain and somatic sensation are transiently normalized by illusory body ownership in a patient with spinal cord injury. Restor. Neurol. Neurosci. 2016, 34, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Makin, T.R.; Bensmaia, S.J. Stability of Sensory Topographies in Adult Cortex. Trends Cogn. Sci. 2017, 21, 195–204. [Google Scholar] [CrossRef]
- Flesher, S.N.; Collinger, J.L.; Foldes, S.T.; Weiss, J.M.; Downey, J.E.; Tyler-Kabara, E.C.; Bensmaia, S.J.; Schwartz, A.B.; Boninger, M.L.; Gaunt, R.A. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 2016, 8, 361ra141. [Google Scholar] [CrossRef]
- Filipp, M.E.; Travis, B.J.; Henry, S.S.; Idzikowski, E.C.; Magnuson, S.A.; Loh, M.Y.; Hellenbrand, D.J.; Hanna, A.S. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural. Regen. Res. 2019, 14, 7–19. [Google Scholar] [CrossRef]
- Cadotte, D.W.; Bosma, R.; Mikulis, D.; Nugaeva, N.; Smith, K.; Pokrupa, R.; Islam, O.; Stroman, P.W.; Fehlings, M.G. Plasticity of the injured human spinal cord: Insights revealed by spinal cord functional MRI. PLoS ONE 2012, 7, e45560. [Google Scholar] [CrossRef] [Green Version]
- Matsubayashi, K.; Nagoshi, N.; Komaki, Y.; Kojima, K.; Shinozaki, M.; Tsuji, O.; Iwanami, A.; Ishihara, R.; Takata, N.; Matsumoto, M.; et al. Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Sci. Rep. 2018, 8, 14406. [Google Scholar] [CrossRef]
- Gourab, K.; Schmit, B.D. Changes in movement-related beta-band EEG signals in human spinal cord injury. Clin. Neurophysiol. 2010, 121, 2017–2023. [Google Scholar] [CrossRef]
- Tetreault, L.; Palubiski, L.M.; Kryshtalskyj, M.; Idler, R.K.; Martin, A.R.; Ganau, M.; Wilson, J.R.; Kotter, M.; Fehlings, M.G. Significant Predictors of Outcome Following Surgery for the Treatment of Degenerative Cervical Myelopathy: A Systematic Review of the Literature. Neurosurg. Clin. N. Am. 2018, 29, 115–127.e135. [Google Scholar] [CrossRef]
- Ziegler, G.; Grabher, P.; Thompson, A.; Altmann, D.; Hupp, M.; Ashburner, J.; Friston, K.; Weiskopf, N.; Curt, A.; Freund, P. Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology 2018, 90, e1257–e1266. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.N.; Gensel, J.C.; Zhang, B. Therapeutic implications of advanced age at time of spinal cord injury. Neural. Regen. Res. 2019, 14, 1895. [Google Scholar]
- Riddoch, G. The reflex functions of the completely divided spinal cord in man, compared with those associated with less severe lesions. Brain 1917, 40, 264–402. [Google Scholar] [CrossRef]
- Drysdale, D.G.; Shem, K.; Walbom, A.; Miner, M.D.; Maclachlan, M. Phantom sensations in people with complete spinal cord lesions: A grounded theory perspective. Disabil. Rehabil. 2009, 31, 267–276. [Google Scholar] [CrossRef]
- Bors, E. Phantom limbs of patients with spinal cord injury. AMA Arch. Neurol. Psychiatry 1951, 66, 610–631. [Google Scholar] [CrossRef]
- Pazzaglia, M.; Leemhuis, E.; Giannini, A.M.; Haggard, P. The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J. Clin. Med. 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, M.; Scivoletto, G.; Giannini, A.M.; Leemhuis, E. My hand in my ear: A phantom limb re-induced by the illusion of body ownership in a patient with a brachial plexus lesion. Psychol. Res. 2019, 83, 196–204. [Google Scholar] [CrossRef]
- Wrigley, P.J.; Press, S.R.; Gustin, S.M.; Macefield, V.G.; Gandevia, S.C.; Cousins, M.J.; Middleton, J.W.; Henderson, L.A.; Siddall, P.J. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 2009, 141, 52–59. [Google Scholar] [CrossRef]
- Kikkert, S.; Johansen-Berg, H.; Tracey, I.; Makin, T.R. Reaffirming the link between chronic phantom limb pain and maintained missing hand representation. Cortex 2018, 106, 174–184. [Google Scholar] [CrossRef]
- Vaso, A.; Adahan, H.M.; Gjika, A.; Zahaj, S.; Zhurda, T.; Vyshka, G.; Devor, M. Peripheral nervous system origin of phantom limb pain. Pain 2014, 155, 1384–1391. [Google Scholar] [CrossRef]
- Scivoletto, G.; Galli, G.; Torre, M.; Molinari, M.; Pazzaglia, M. The Overlooked Outcome Measure for Spinal Cord Injury: Use of Assistive Devices. Front. Neurol. 2019, 10, 272. [Google Scholar] [CrossRef]
- Ganau, M.; Holly, L.T.; Mizuno, J.; Fehlings, M.G. Future Directions and New Technologies for the Management of Degenerative Cervical Myelopathy. Neurosurg. Clin. N. Am. 2018, 29, 185–193. [Google Scholar] [CrossRef]
- Galli, G.; Lenggenhager, B.; Scivoletto, G.; Giannini, A.M.; Pazzaglia, M. “My friend, the pain”: Does altered body awareness affect the valence of pain descriptors? J. Pain Res. 2019, 12, 1721–1732. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leemhuis, E.; De Gennaro, L.; Pazzaglia, a.M. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. J. Clin. Med. 2019, 8, 2144. https://doi.org/10.3390/jcm8122144
Leemhuis E, De Gennaro L, Pazzaglia aM. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. Journal of Clinical Medicine. 2019; 8(12):2144. https://doi.org/10.3390/jcm8122144
Chicago/Turabian StyleLeemhuis, Erik, Luigi De Gennaro, and and Mariella Pazzaglia. 2019. "Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury" Journal of Clinical Medicine 8, no. 12: 2144. https://doi.org/10.3390/jcm8122144