Prognostic Value of MiR-21: An Updated Meta-Analysis in Head and Neck Squamous Cell Carcinoma (HNSCC)
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Eligibility Criteria for Meta-Analysis
2.2. Search Strategy in Open Databases
2.3. Quality Appraisal
2.4. Data Extraction
2.5. Data Analysis
3. Results
3.1. Database Screening and Characteristics of the Included Studies
3.2. Data Analysis
3.3. Publication Bias Analysis
3.3.1. Classic Fail-safe N
3.3.2. Begg and Mazumdar’s rank correlation
3.4. Moderators’ Analysis
3.4.1. Categorical moderators
Sample Type
Technique
3.4.2. Continuous moderators
Percentage of Women
Percentage of Smokers
Percentage of HPV-16 Positive Patients
Percentage of Patients with Stage III/IV Disease
Percentage of Patients Who Have Undergone Therapy after the Sampling
3.5. MiR-21 Expression Across Various Datasets
3.5.1. miR-21 HNSCC targets are involved in angiogenesis and RUNX expression
3.5.2. Targeted gene expression correlation with overall survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peltanova, B.; Raudenska, M.; Masarik, M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol. Cancer 2019, 18, 63. [Google Scholar] [CrossRef]
- Irimie, A.I.; Braicu, C.; Cojocneanu-Petric, R.; Berindan-Neagoe, I.; Campian, R.S. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol. Scand. 2015, 73, 161–168. [Google Scholar] [CrossRef]
- Kulasinghe, A.; Schmidt, H.; Perry, C.; Whitfield, B.; Kenny, L.; Nelson, C.; Warkiani, M.E.; Punyadeera, C. A Collective Route to Head and Neck Cancer Metastasis. Sci. Rep. 2018, 8, 746. [Google Scholar] [CrossRef]
- Irimie, A.I.; Braicu, C.; Cojocneanu, R.; Magdo, L.; Onaciu, A.; Ciocan, C.; Mehterov, N.; Dudea, D.; Buduru, S.; Berindan-Neagoe, I. Differential Effect of Smoking on Gene Expression in Head and Neck Cancer Patients. Int. J. Environ. Res. Public Health 2018, 15, 1558. [Google Scholar] [CrossRef]
- Irimie, A.I.; Sonea, L.; Jurj, A.; Mehterov, N.; Zimta, A.A.; Budisan, L.; Braicu, C.; Berindan-Neagoe, I. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int. J. Nanomed. 2017, 12, 4593–4606. [Google Scholar] [CrossRef]
- Kobayashi, K.; Hisamatsu, K.; Suzui, N.; Hara, A.; Tomita, H.; Miyazaki, T. A Review of HPV-Related Head and Neck Cancer. J. Clin. Med. 2018, 7, 241. [Google Scholar] [CrossRef]
- Braicu, C.; Catana, C.; Calin, G.A.; Berindan-Neagoe, I. NCRNA combined therapy as future treatment option for cancer. Curr. Pharm. Des. 2014, 20, 6565–6574. [Google Scholar] [CrossRef]
- Irimie, A.I.; Braicu, C.; Sonea, L.; Zimta, A.A.; Cojocneanu-Petric, R.; Tonchev, K.; Mehterov, N.; Diudea, D.; Buduru, S.; Berindan-Neagoe, I. A Looking-Glass of Non-coding RNAs in oral cancer. Int. J. Mol. Sci. 2017, 18, 2620. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Bica-Pop, C.; Cojocneanu-Petric, R.; Magdo, L.; Raduly, L.; Gulei, D.; Berindan-Neagoe, I. Overview upon miR-21 in lung cancer: Focus on NSCLC. Cell. Mol. Life Sci. CMLS 2018, 75, 3539–3551. [Google Scholar] [CrossRef]
- Redis, R.S.; Berindan-Neagoe, I.; Pop, V.I.; Calin, G.A. Non-coding RNAs as theranostics in human cancers. J. Cell. Biochem. 2012, 113, 1451–1459. [Google Scholar] [CrossRef]
- Sun, S.-S.; Zhou, X.; Huang, Y.-Y.; Kong, L.-P.; Mei, M.; Guo, W.-Y.; Zhao, M.-H.; Ren, Y.; Shen, Q.; Zhang, L. Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma. Mol. Cancer 2015, 14, 213. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, M.; Liu, H.; He, W.; Lin, S.; Yuan, T.; Chen, H.; Dai, S. Diagnostic value of circulating miR-21: An update meta-analysis in various cancers and validation in endometrial cancer. Oncotarget 2016, 7, 68894–68908. [Google Scholar] [CrossRef]
- Liu, T.; Chen, G.; Sun, D.; Lei, M.; Li, Y.; Zhou, C.; Li, X.; Xue, W.; Wang, H.; Liu, C.; et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim. Biophys. Sin. 2017, 49, 808–816. [Google Scholar] [CrossRef]
- Wang, W.; Songlin, P.; Sun, Y.; Zhang, B.; Jinhui, W. miR-21 inhibitor sensitizes human OSCC cells to cisplatin. Mol. Biol. Rep. 2012, 39, 5481–5485. [Google Scholar] [CrossRef]
- Yan, F.; Wang, C.; Li, T.; Cai, W.; Sun, J. Role of miR-21 in the growth and metastasis of human salivary adenoid cystic carcinoma. Mol. Med. Rep. 2018, 17, 4237–4244. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Sun, L.; Yang, M.; Pan, C.; Chen, W.; Wu, D.; Lin, Z.; Zeng, C.; Yao, Y.; et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin. Cancer Res. 2009, 15, 3998–4008. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, X.; Cheng, G.; Zhou, M.; Lou, W. Downregulation of microRNA-21 enhances radiosensitivity in nasopharyngeal carcinoma. Exp. Ther. Med. 2015, 9, 2185–2189. [Google Scholar] [CrossRef]
- Yeh, S.A. Radiotherapy for head and neck cancer. Semin. Plast. Surg. 2010, 24, 127–136. [Google Scholar] [CrossRef]
- Cen, W.N.; Pang, J.S.; Huang, J.C.; Hou, J.Y.; Bao, W.G.; He, R.Q.; Ma, J.; Peng, Z.G.; Hu, X.H.; Ma, F.C. The expression and biological information analysis of miR-375-3p in head and neck squamous cell carcinoma based on 1825 samples from GEO, TCGA, and peer-reviewed publications. Pathol. Res. Pract. 2018, 214, 1835–1847. [Google Scholar] [CrossRef]
- Childs, G.; Fazzari, M.; Kung, G.; Kawachi, N.; Brandwein-Gensler, M.; McLemore, M.; Chen, Q.; Burk, R.D.; Smith, R.V.; Prystowsky, M.B.; et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 2009, 174, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Avissar, M.; McClean, M.D.; Kelsey, K.T.; Marsit, C.J. MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. Carcinogenesis 2009, 30, 2059–2063. [Google Scholar] [CrossRef] [PubMed]
- Hedback, N.; Jensen, D.H.; Specht, L.; Fiehn, A.M.; Therkildsen, M.H.; Friis-Hansen, L.; Dabelsteen, E.; von Buchwald, C. MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: An independent biomarker of disease free survival. PLoS ONE 2014, 9, e95193. [Google Scholar] [CrossRef]
- Ko, Y.H.; Won, H.S.; Sun, D.S.; An, H.J.; Jeon, E.K.; Kim, M.S.; Lee, H.H.; Kang, J.H.; Jung, C.K. Human papillomavirus-stratified analysis of the prognostic role of miR-21 in oral cavity and oropharyngeal squamous cell carcinoma. Pathol. Int. 2014, 64, 499–507. [Google Scholar] [CrossRef]
- Arantes, L.M.; Laus, A.C.; Melendez, M.E.; de Carvalho, A.C.; Sorroche, B.P.; De Marchi, P.R.; Evangelista, A.F.; Scapulatempo-Neto, C.; de Souza Viana, L.; Carvalho, A.L. MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. Oncotarget 2017, 8, 9911–9921. [Google Scholar] [CrossRef]
- Yu, E.H.; Tu, H.F.; Wu, C.H.; Yang, C.C.; Chang, K.W. MicroRNA-21 promotes perineural invasion and impacts survival in patients with oral carcinoma. J. Chin. Med Assoc. JCMA 2017, 80, 383–388. [Google Scholar] [CrossRef]
- Supic, G.; Zeljic, K.; Rankov, A.D.; Kozomara, R.; Nikolic, A.; Radojkovic, D.; Magic, Z. miR-183 and miR-21 expression as biomarkers of progression and survival in tongue carcinoma patients. Clin. Oral Investig. 2018, 22, 401–409. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Wei, F.; Zhang, X.; Yu, J.; Zhao, H.; Sun, Q.; Yan, F.; Yan, C.; Li, H.; et al. Diagnostic and prognostic value of circulating miR-21 for cancer: A systematic review and meta-analysis. Gene 2014, 533, 389–397. [Google Scholar] [CrossRef]
- Ishinaga, H.; He, F.; Hou, B.; Shah, S.; Murata, M.; Takeuchi, K. A longitudinal study on circulating miR-21 as a therapeutic effect marker in head and neck squamous cell carcinoma. Carcinogenesis 2019, 40, 1070–1076. [Google Scholar] [CrossRef]
- He, Q.; Chen, Z.; Cabay, R.J.; Zhang, L.; Luan, X.; Chen, D.; Yu, T.; Wang, A.; Zhou, X. microRNA-21 and microRNA-375 from oral cytology as biomarkers for oral tongue cancer detection. Oral Oncol. 2016, 57, 15–20. [Google Scholar] [CrossRef]
- Sun, Z.; Li, S.; Kaufmann, A.M.; Albers, A.E. miR-21 increases the programmed cell death 4 gene-regulated cell proliferation in head and neck squamous carcinoma cell lines. Oncol. Rep. 2014, 32, 2283–2289. [Google Scholar] [CrossRef]
- Qiu, Y.F.; Wang, M.X.; Meng, L.N.; Zhang, R.; Wang, W. MiR-21 regulates proliferation and apoptosis of oral cancer cells through TNF-alpha. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7735–7741. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, J.; Jiang, F.; Li, Y.; Chang, G.; Ma, H. Inhibition of miR21 promotes cell apoptosis in oral squamous cell carcinoma by upregulating PTEN. Oncol. Rep. 2018, 40, 2798–2805. [Google Scholar] [CrossRef]
- Momen-Heravi, F.; Bala, S. Extracellular vesicles in oral squamous carcinoma carry oncogenic miRNA profile and reprogram monocytes via NF-kappaB pathway. Oncotarget 2018, 9, 34838–34854. [Google Scholar] [CrossRef] [Green Version]
- Ou, H.; Li, Y.; Kang, M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS ONE 2014, 9, e109929. [Google Scholar] [CrossRef]
- Li, Y.; Yan, L.; Zhang, W.; Wang, H.; Chen, W.; Hu, N.; Ou, H. miR-21 inhibitor suppresses proliferation and migration of nasopharyngeal carcinoma cells through down-regulation of BCL2 expression. Int. J. Clin. Exp. Pathol. 2014, 7, 3478–3487. [Google Scholar]
- Zheng, G.; Li, N.; Jia, X.; Peng, C.; Luo, L.; Deng, Y.; Yin, J.; Song, Y.; Liu, H.; Lu, M.; et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J. Mol. Med. 2016, 94, 1129–1141. [Google Scholar] [CrossRef]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: A systematic review. Cancer Epidemiol. Biomark. Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Rampias, T.; Sasaki, C.; Weinberger, P.; Psyrri, A. E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J. Natl. Cancer Inst. 2009, 101, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Ragin, C.C.; Modugno, F.; Gollin, S.M. The epidemiology and risk factors of head and neck cancer: A focus on human papillomavirus. J. Dent. Res. 2007, 86, 104–114. [Google Scholar] [CrossRef]
- Kimple, R.J.; Smith, M.A.; Blitzer, G.C.; Torres, A.D.; Martin, J.A.; Yang, R.Z.; Peet, C.R.; Lorenz, L.D.; Nickel, K.P.; Klingelhutz, A.J.; et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res. 2013, 73, 4791–4800. [Google Scholar] [CrossRef]
Reference | Country | Anatomic Site (n) | n | Smoking Status | HPV Status (n) | Outcome | Effect Sizes |
---|---|---|---|---|---|---|---|
Arantes et al. 2017 [25] | Brazil | Oropharynx (35) Hypopharynx/larynx (36) | 71 | yes: 57 no: 14 | Positive (17) | OS | HR: 2.05 (1.05–4.02) |
Ko et al. 2014 [24] | Korea | Oral cavity (88) Oropharyngeal (79) | 167 | yes: 109 no: 57 | Positive (36) | RFS | HR: 1.659 (0.824–3.343) |
CSS | HR: 2.972 (1.34–6.59) | ||||||
Hedbäck et al. 2014 [23] | Denmark | Oral cavity (86) | 86 | - | - | DFS | HR: 1.6 (1.1–2.5) |
Avissar et al. 2009 [22] | USA | Oral cavity (94) Pharyngeal (31) Laryngeal (22) | 169 | yes: 120 no: 22 | Positive (19) | 5-year survival | HR: 1.68 (1.04–2.77) |
Childs et al. 2009 [21] | USA | Oral cavity (31) Oropharynx (32) Hypopharynx (9) Larynx (32) | 104 | yes: 46 no: 56 | Positive (37) | OS | HR: 1 |
Yu et al. 2017 [26] | Taiwan | Oral cavity (100) | 100 | - | - | DFS | HR: 1.87 (1.21–2.87) |
Supic et al. 2018 [27] | Serbia | Tongue (60) | 60 | yes: 42 no: 18 | - | OS | HR: 2.002 (0.904–4.434) |
Moderator | Categories of the Moderator | No. of Studies | Hazard Ratio | Lower Limit | Upper Limit | QB | df | p |
---|---|---|---|---|---|---|---|---|
Sample | FFPE tissue | 3 | 1.771 | 1.313 | 2.391 | 0.071 | 1 | 0.789 |
Tissue | 4 | 1.675 | 1.267 | 2.215 | ||||
Technique | ISH | 3 | 1.767 | 1.356 | 2.303 | 0.103 | 1 | 0.749 |
Microarray/qRT-PCR | 4 | 1.651 | 1.197 | 2.277 |
Full Name | Abbreviation |
---|---|
Argonaute RISC Catalytic Component 2 | AGO2 |
Allograft Inflammatory Factor 1 Like | AIF1L |
Chromosome 1 Open Reading Frame 112 | C1orf112 |
C-C Motif Chemokine Ligand 20 | CCL20 |
Cyclin Dependent Kinase 6 | CDK6 |
Ciliary Neurotrophic Factor Receptor | CNTFR |
Collagen Type IV Alpha 1 Chain | COL4A1 |
Endothelial Cell Specific Molecule 1 | ESM1 |
Fibroblast Growth Factor 7 | FGF7 |
GLIS Family Zinc Finger 2 | GLIS2 |
Jagged Canonical Notch Ligand 1 | JAG1 |
Melanoma Cell Adhesion Molecule | MCAM |
Neural EGFL Like 2 | NELL2 |
Neuropilin And Tolloid Like 2 | NETO2 |
Neurotrophin 3 | NTF3 |
Oxidized Low Density Lipoprotein Receptor 1 | OLR1 |
Odd-Skipped Related Transcription Factor 1 | OSR1 |
Poly(A) Binding Protein Interacting Protein 2B | PAIP2B |
Programmed Cell Death 4 | PDCD4 |
Proline And Serine Rich Coiled-Coil 1 | PSRC1 |
Roundabout Guidance Receptor 2 | ROBO2 |
Radical S-Adenosyl Methionine Domain Containing 2 | RSAD2 |
SAM And SH3 Domain Containing 1 | SASH1 |
Secernin 1 | SCRN1 |
Sprouty RTK Signaling Antagonist 4 | SPRY4 |
Sarcalumenin | SRL |
Transforming Growth Factor Beta Induced | TGFΒI |
Tensin 1 | TNS1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irimie-Aghiorghiesei, A.I.; Pop-Bica, C.; Pintea, S.; Braicu, C.; Cojocneanu, R.; Zimța, A.-A.; Gulei, D.; Slabý, O.; Berindan-Neagoe, I. Prognostic Value of MiR-21: An Updated Meta-Analysis in Head and Neck Squamous Cell Carcinoma (HNSCC). J. Clin. Med. 2019, 8, 2041. https://doi.org/10.3390/jcm8122041
Irimie-Aghiorghiesei AI, Pop-Bica C, Pintea S, Braicu C, Cojocneanu R, Zimța A-A, Gulei D, Slabý O, Berindan-Neagoe I. Prognostic Value of MiR-21: An Updated Meta-Analysis in Head and Neck Squamous Cell Carcinoma (HNSCC). Journal of Clinical Medicine. 2019; 8(12):2041. https://doi.org/10.3390/jcm8122041
Chicago/Turabian StyleIrimie-Aghiorghiesei, Alexandra Iulia, Cecilia Pop-Bica, Sebastian Pintea, Cornelia Braicu, Roxana Cojocneanu, Alina-Andreea Zimța, Diana Gulei, Ondřej Slabý, and Ioana Berindan-Neagoe. 2019. "Prognostic Value of MiR-21: An Updated Meta-Analysis in Head and Neck Squamous Cell Carcinoma (HNSCC)" Journal of Clinical Medicine 8, no. 12: 2041. https://doi.org/10.3390/jcm8122041
APA StyleIrimie-Aghiorghiesei, A. I., Pop-Bica, C., Pintea, S., Braicu, C., Cojocneanu, R., Zimța, A.-A., Gulei, D., Slabý, O., & Berindan-Neagoe, I. (2019). Prognostic Value of MiR-21: An Updated Meta-Analysis in Head and Neck Squamous Cell Carcinoma (HNSCC). Journal of Clinical Medicine, 8(12), 2041. https://doi.org/10.3390/jcm8122041