Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Ethics Statement
2.2. Patient Population
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lang, A.E.; Lozano, A.M. Parkinson’s Disease. N. Engl. J. Med. 1998, 339, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Halbach, O.V.B.U.; Schober, A.; Krieglstein, K. Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog. Neurobiol. 2004, 73, 151–177. [Google Scholar] [CrossRef]
- Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 2010, 37, 510–518. [Google Scholar] [CrossRef]
- Ferreira, S.A.; Romero-Ramos, M. Microglia response during Parkinson’s disease: Alpha-synuclein intervention. Front. Cell. Neurosci. 2018, 12, 247. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Joh, T.H. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med. 2006, 38, 333–347. [Google Scholar] [CrossRef]
- Suzumura, A.; Sawada, M.; Yamamoto, H.; Marunouchi, T. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 1990, 30, 111–120. [Google Scholar] [CrossRef]
- Erblich, B.; Zhu, L.; Etgen, A.M.; Dobrenis, K.; Pollard, J.W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 2011, 6, e26317. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, E.E.; Lee, R.J.; Najafi, A.R.; Rice, R.A.; Elmore, M.R.; Blurton-Jones, M.; West, B.L.; Green, K.N. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 2016, 139, 1265–1281. [Google Scholar] [CrossRef] [PubMed]
- De, I.; Nikodemova, M.; Steffen, M.D.; Sokn, E.; Maklakova, V.I.; Watters, J.J.; Collier, L.S. CSF1 overexpression has pleiotropic effects on microglia in vivo. Glia 2014, 62, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Pepe, G.; De Maglie, M.; Minoli, L.; Villa, A.; Maggi, A.; Vegeto, E. Selective proliferative response of microglia to alternative polarization signals. J. Neuroinflamm. 2017, 14, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Zhang, T.L.; Wang, L.M. The association of CSF-1 gene polymorphism with chronic periodontitis in the Han Chinese population. J. Periodontol. 2014, 85, e304–e312. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.K.; Lee, S.H.; Cho, S.H.; Jung, S.; Yoon, S.H.; Park, S.W.; Park, J.S.; Uh, S.T.; Kim, Y.K.; Kim, Y.H.; et al. Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk. Hum. Genet. 2010, 128, 293–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabello, D.; Soedarsono, N.; Kamei, H.; Ishihara, Y.; Noguchi, T.; Fuma, D.; Suzuki, M.; Sakaki, Y.; Yamaguchi, A.; Kojima, T. CSF1 gene associated with aggressive periodontitis in the Japanese population. Biochem. Biophys. Res. Commun. 2006, 347, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, L.; Chang, H.; Christo, D.K.; Thuita, L.; Huang, H.Y.; Strickland, P.; Ruczinski, I.; Hoffman, S.C.; Helzlsouer, K.J. Single nucleotide polymorphisms in inflammation-related genes and mortality in a community-based cohort in Washington County, Maryland. Am. J. Epidemiol. 2008, 167, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Lee, S.Y.; Jeon, H.S.; Choi, Y.Y.; Kim, S.; Lee, W.K.; Lee, H.C.; Choi, J.E.; Bae, E.Y.; Yoo, S.S.; et al. A functional polymorphism in CSF1R gene is a novel susceptibility marker for lung cancer among never-smoking females. J. Thorac. Oncol. 2014, 9, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef]
- Wollmer, M.A.; Nitsch, R.M.; Hock, C.; Papassotiropoulos, A. Genetic association study on colony-stimulating factor 1 in Alzheimer’s disease. Neurodegener. Dis. 2006, 3, 334–337. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakajima, K.; Kohsaka, S. Macrophage-colony stimulating factor as an inducer of microglial proliferation in axotomized rat facial nucleus. J. Neurochem. 2010, 115, 1057–1067. [Google Scholar] [CrossRef]
- Smith, A.M.; Gibbons, H.M.; Oldfield, R.L.; Bergin, P.M.; Mee, E.W.; Curtis, M.A.; Faull, R.L.; Dragunow, M. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J. Neuroinflamm. 2013, 10, 859. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Nicola, D.; Fransen, N.L.; Suzzi, S.; Perry, V.H. Regulation of microglial proliferation during chronic neurodegeneration. J. Neurosci. 2013, 33, 2481–2493. [Google Scholar] [CrossRef] [PubMed]
- Boissonneault, V.; Filali, M.; Lessard, M.; Relton, J.; Wong, G.; Rivest, S. Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 2009, 132, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Lalancette-Hebert, M.; Gowing, G.; Simard, A.; Weng, Y.C.; Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 2007, 27, 2596–2605. [Google Scholar] [CrossRef] [PubMed]
- Lodge, P.A.; Sriram, S. Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J. Leukoc. Biol. 1996, 60, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Hirato, T.; Takano, M.; Nishida, T.; Nagamura, K.; Kamogashira, T.; Nakai, S.; Hirai, Y. Amino-terminal region of human macrophage colony-stimulating factor (M-CSF) is sufficient for its in vitro biological activity: Molecular cloning and expression of carboxyl-terminal deletion mutants of human M-CSF. Biochem. Biophys. Res. Commun. 1989, 161, 892–901. [Google Scholar] [CrossRef]
- Rademakers, R.; Baker, M.; Nicholson, A.M.; Rutherford, N.J.; Finch, N.; Soto-Ortolaza, A.; Lash, J.; Wider, C.; Wojtas, A.; DeJesus-Hernandez, M.; et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 2011, 44, 200–205. [Google Scholar] [CrossRef]
- Giau, V.V.; Senanarong, V.; Bagyinszky, E.; An, S.S.A.; Kim, S. Analysis of 50 neurodegenerative genes in clinically diagnosed early-onset Alzheimer’s disease. Int. J. Mol. Sci. 2019, 20, 1514. [Google Scholar] [CrossRef]
- Sassi, C.; Nalls, M.A.; Ridge, P.G.; Gibbs, J.R.; Lupton, M.K.; Troakes, C.; Lunnon, K.; Al-Sarraj, S.; Brown, K.S.; Medway, C.; et al. Mendelian adult-onset leukodystrophy genes in Alzheimer’s disease: Critical influence of CSF1R and NOTCH3. Neurobiol. Aging 2018, 66, 179.e17–179.e29. [Google Scholar] [CrossRef]
PD | Controls | Total | p Value | |
---|---|---|---|---|
Number | 502 | 511 | 1013 | |
Age (years) | 63.64 ± 10.76 (age at onset) | 63.38 ± 11.90 | 63.51 ± 11.35 | 0.72 |
Gender (female/male) | 253/249 | 252/259 | 505/508 | 0.73 |
Hohn and Yahr stage | ||||
I | 170 (33.9%) | |||
II | 197 (39.2%) | |||
III | 101 (20.1%) | |||
IV | 25 (5.0%) | |||
V | 9 (1.8%) |
PD (%) | Controls (%) | OR (95% CI) | p Value | |
---|---|---|---|---|
Overall | 502 | 511 | ||
Genotype frequency | ||||
CC | 184 (36.7%) | 155 (30.3%) | 1.00 | |
CT | 247 (49.2%) | 261 (51.1%) | 0.80 (0.61–1.05) | 0.107 |
TT | 71 (14.1%) | 95 (18.6%) | 0.63 (0.43–0.92) | 0.015 |
Dominant model | ||||
CC | 184 (36.7%) | 155 (30.3%) | 1.00 | |
CT + TT | 318 (63.3%) | 356 (69.7%) | 0.75 (0.58–0.98) | 0.033 |
Recessive model | ||||
CT + CC | 431 (85.9%) | 416 (81.4%) | 1.00 | |
TT | 71 (14.1%) | 95 (18.6%) | 0.72 (0.52–1.01) | 0.056 |
Allele frequency | ||||
Major allele (C) | 615 (61.3%) | 571 (55.9%) | 1.00 | |
Minor allele (T) | 389 (38.7%) | 451 (44.1%) | 0.80 (0.67–0.96) | 0.014 |
EOPD | 60 | 78 | ||
Genotype frequency | ||||
CC | 27 (45.0%) | 24 (30.8%) | 1.00 | |
CT | 27 (45.0%) | 43 (55.1%) | 0.56 (0.27–1.16) | 0.116 |
TT | 6 (10.0%) | 11 (14.1%) | 0.48 (0.16–1.51) | 0.208 |
Allele frequency | ||||
Major allele (C) | 81 (67.5%) | 91 (58.3%) | 1.00 | |
Minor allele (T) | 39 (32.5%) | 65 (41.7%) | 0.67 (0.41–1.11) | 0.119 |
LOPD | 442 | 433 | ||
Genotype frequency | ||||
CC | 157 (35.5%) | 131 (30.3%) | 1.00 | |
CT | 220 (49.8%) | 218 (50.3%) | 0.84 (0.63–1.13) | 0.259 |
TT | 65 (14.7%) | 84 (19.4%) | 0.65 (0.43–0.96) | 0.031 |
Allele frequency | ||||
Major allele (C) | 534 (60.4%) | 480 (55.4%) | 1.00 | |
Minor allele (T) | 350 (39.6%) | 386 (44.6%) | 0.82 (0.67–0.99) | 0.035 |
Female | 253 | 252 | ||
Genotype frequency | ||||
CC | 89 (35.2%) | 75 (29.8%) | 1.00 | |
CT | 128 (50.6%) | 130 (51.6%) | 0.83 (0.56–1.23) | 0.351 |
TT | 36 (14.2%) | 47 (18.7%) | 0.65 (0.38–1.10) | 0.106 |
Allele frequency | ||||
Major allele (C) | 306 (60.5%) | 280 (55.6%) | 1.00 | |
Minor allele (T) | 200 (39.5%) | 224 (44.4%) | 0.82 (0.64–1.05) | 0.113 |
Male | 249 | 259 | ||
Genotype frequency | ||||
CC | 95 (38.2%) | 80 (30.9%) | 1.00 | |
CT | 119 (47.8%) | 131 (50.6%) | 0.77 (0.52–1.13) | 0.175 |
TT | 35 (14.1%) | 48 (18.5%) | 0.61 (0.36–1.04) | 0.069 |
Allele frequency | ||||
Major allele (C) | 309 (62.0%) | 291 (56.2%) | 1.00 | |
Minor allele (T) | 189 (38.0%) | 227 (43.8%) | 0.78 (0.61–1.01) | 0.057 |
PD (%) | Controls (%) | OR (95% CI) | p Value | |
---|---|---|---|---|
Overall | 502 | 511 | ||
Genotype frequency | ||||
TT | 199 (39.6%) | 188 (36.8%) | 1.00 | |
CT | 233 (46.4%) | 241 (47.2%) | 0.91 (0.70–1.20) | 0.509 |
CC | 70 (13.9%) | 82 (15.9%) | 0.81 (0.55–1.18) | 0.263 |
Dominant model | ||||
TT | 199 (39.6%) | 188 (36.8%) | 1.00 | |
CT + CC | 303 (60.4%) | 323 (63.2%) | 0.89 (0.69–1.14) | 0.351 |
Recessive model | ||||
CT + TT | 432 (86.1%) | 429 (84.0%) | 1.00 | |
CC | 70 (13.9%) | 82 (16.0%) | 0.85 (0.60–1.20) | 0.349 |
Allele frequency | ||||
Major allele (T) | 631 (62.8%) | 617 (67.8%) | 1.00 | |
Minor allele (C) | 373 (37.2%) | 405 (39.6%) | 0.90 (0.75–1.08) | 0.253 |
EOPD | 60 | 78 | ||
Genotype frequency | ||||
TT | 18 (30.0%) | 27 (34.6%) | 1.00 | |
CT | 33 (55.0%) | 33 (42.3%) | 1.50 (0.70–3.23) | 0.301 |
CC | 9 (15.0%) | 18 (23.1%) | 0.75 (0.28–2.03) | 0.572 |
Allele frequency | ||||
Major allele (T) | 69 (57.5%) | 87 (55.8%) | 1.00 | |
Minor allele (C) | 51 (42.5%) | 69 (44.2%) | 0.93 (0.58–1.51) | 0.774 |
LOPD | 442 | 433 | ||
Genotype frequency | ||||
TT | 181 (41.0%) | 161 (37.2%) | 1.00 | |
CT | 200 (45.2%) | 207 (47.8%) | 0.86 (0.64–1.15) | 0.304 |
CC | 61 (13.8%) | 65 (15.0%) | 0.83 (0.55–1.26) | 0.386 |
Allele frequency | ||||
Major allele (T) | 562 (63.6%) | 529 (61.1%) | 1.00 | |
Minor allele (C) | 322 (36.4%) | 337 (38.9%) | 0.90 (0.74–1.09) | 0.284 |
Female | 253 | 252 | ||
Genotype frequency | ||||
TT | 94 (37.2%) | 92 (36.5%) | 1.00 | |
CT | 122 (48.2%) | 120 (47.6%) | 1.00 (0.68–1.46) | 0.980 |
CC | 37 (14.6%) | 40 (15.9%) | 0.91 (0.53–1.54) | 0.713 |
Allele frequency | ||||
Major allele (T) | 310 (61.3%) | 304 (60.3%) | 1.00 | |
Minor allele (C) | 196 (38.7%) | 200 (39.7%) | 0.96 (0.75–1.24) | 0.758 |
Male | 249 | 259 | ||
Genotype frequency | ||||
TT | 105 (42.2%) | 96 (37.1%) | 1.00 | |
CT | 111 (44.6%) | 121 (46.7%) | 0.84 (0.57–1.22) | 0.362 |
CC | 33 (13.3%) | 42 (16.2%) | 0.72 (0.42–1.23) | 0.224 |
Allele frequency | ||||
Major allele (T) | 321 (64.5%) | 313 (60.4%) | 1.00 | |
Minor allele (C) | 177 (35.5%) | 205 (39.6%) | 0.84 (0.65–1.09) | 0.185 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.-H.; Wu, Y.-R.; Chen, Y.-C.; Wu, H.-C.; Chen, C.-M. Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan. J. Clin. Med. 2019, 8, 1529. https://doi.org/10.3390/jcm8101529
Chang K-H, Wu Y-R, Chen Y-C, Wu H-C, Chen C-M. Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan. Journal of Clinical Medicine. 2019; 8(10):1529. https://doi.org/10.3390/jcm8101529
Chicago/Turabian StyleChang, Kuo-Hsuan, Yih-Ru Wu, Yi-Chun Chen, Hsiu-Chuan Wu, and Chiung-Mei Chen. 2019. "Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan" Journal of Clinical Medicine 8, no. 10: 1529. https://doi.org/10.3390/jcm8101529
APA StyleChang, K.-H., Wu, Y.-R., Chen, Y.-C., Wu, H.-C., & Chen, C.-M. (2019). Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan. Journal of Clinical Medicine, 8(10), 1529. https://doi.org/10.3390/jcm8101529