Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan
Abstract
1. Introduction
2. Subjects and Methods
2.1. Ethics Statement
2.2. Patient Population
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lang, A.E.; Lozano, A.M. Parkinson’s Disease. N. Engl. J. Med. 1998, 339, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Halbach, O.V.B.U.; Schober, A.; Krieglstein, K. Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog. Neurobiol. 2004, 73, 151–177. [Google Scholar] [CrossRef]
- Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 2010, 37, 510–518. [Google Scholar] [CrossRef]
- Ferreira, S.A.; Romero-Ramos, M. Microglia response during Parkinson’s disease: Alpha-synuclein intervention. Front. Cell. Neurosci. 2018, 12, 247. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Joh, T.H. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med. 2006, 38, 333–347. [Google Scholar] [CrossRef]
- Suzumura, A.; Sawada, M.; Yamamoto, H.; Marunouchi, T. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 1990, 30, 111–120. [Google Scholar] [CrossRef]
- Erblich, B.; Zhu, L.; Etgen, A.M.; Dobrenis, K.; Pollard, J.W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 2011, 6, e26317. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, E.E.; Lee, R.J.; Najafi, A.R.; Rice, R.A.; Elmore, M.R.; Blurton-Jones, M.; West, B.L.; Green, K.N. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 2016, 139, 1265–1281. [Google Scholar] [CrossRef] [PubMed]
- De, I.; Nikodemova, M.; Steffen, M.D.; Sokn, E.; Maklakova, V.I.; Watters, J.J.; Collier, L.S. CSF1 overexpression has pleiotropic effects on microglia in vivo. Glia 2014, 62, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Pepe, G.; De Maglie, M.; Minoli, L.; Villa, A.; Maggi, A.; Vegeto, E. Selective proliferative response of microglia to alternative polarization signals. J. Neuroinflamm. 2017, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, T.L.; Wang, L.M. The association of CSF-1 gene polymorphism with chronic periodontitis in the Han Chinese population. J. Periodontol. 2014, 85, e304–e312. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.K.; Lee, S.H.; Cho, S.H.; Jung, S.; Yoon, S.H.; Park, S.W.; Park, J.S.; Uh, S.T.; Kim, Y.K.; Kim, Y.H.; et al. Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk. Hum. Genet. 2010, 128, 293–302. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rabello, D.; Soedarsono, N.; Kamei, H.; Ishihara, Y.; Noguchi, T.; Fuma, D.; Suzuki, M.; Sakaki, Y.; Yamaguchi, A.; Kojima, T. CSF1 gene associated with aggressive periodontitis in the Japanese population. Biochem. Biophys. Res. Commun. 2006, 347, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, L.; Chang, H.; Christo, D.K.; Thuita, L.; Huang, H.Y.; Strickland, P.; Ruczinski, I.; Hoffman, S.C.; Helzlsouer, K.J. Single nucleotide polymorphisms in inflammation-related genes and mortality in a community-based cohort in Washington County, Maryland. Am. J. Epidemiol. 2008, 167, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Lee, S.Y.; Jeon, H.S.; Choi, Y.Y.; Kim, S.; Lee, W.K.; Lee, H.C.; Choi, J.E.; Bae, E.Y.; Yoo, S.S.; et al. A functional polymorphism in CSF1R gene is a novel susceptibility marker for lung cancer among never-smoking females. J. Thorac. Oncol. 2014, 9, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef]
- Wollmer, M.A.; Nitsch, R.M.; Hock, C.; Papassotiropoulos, A. Genetic association study on colony-stimulating factor 1 in Alzheimer’s disease. Neurodegener. Dis. 2006, 3, 334–337. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakajima, K.; Kohsaka, S. Macrophage-colony stimulating factor as an inducer of microglial proliferation in axotomized rat facial nucleus. J. Neurochem. 2010, 115, 1057–1067. [Google Scholar] [CrossRef]
- Smith, A.M.; Gibbons, H.M.; Oldfield, R.L.; Bergin, P.M.; Mee, E.W.; Curtis, M.A.; Faull, R.L.; Dragunow, M. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J. Neuroinflamm. 2013, 10, 859. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Nicola, D.; Fransen, N.L.; Suzzi, S.; Perry, V.H. Regulation of microglial proliferation during chronic neurodegeneration. J. Neurosci. 2013, 33, 2481–2493. [Google Scholar] [CrossRef] [PubMed]
- Boissonneault, V.; Filali, M.; Lessard, M.; Relton, J.; Wong, G.; Rivest, S. Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 2009, 132, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Lalancette-Hebert, M.; Gowing, G.; Simard, A.; Weng, Y.C.; Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 2007, 27, 2596–2605. [Google Scholar] [CrossRef] [PubMed]
- Lodge, P.A.; Sriram, S. Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J. Leukoc. Biol. 1996, 60, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Hirato, T.; Takano, M.; Nishida, T.; Nagamura, K.; Kamogashira, T.; Nakai, S.; Hirai, Y. Amino-terminal region of human macrophage colony-stimulating factor (M-CSF) is sufficient for its in vitro biological activity: Molecular cloning and expression of carboxyl-terminal deletion mutants of human M-CSF. Biochem. Biophys. Res. Commun. 1989, 161, 892–901. [Google Scholar] [CrossRef]
- Rademakers, R.; Baker, M.; Nicholson, A.M.; Rutherford, N.J.; Finch, N.; Soto-Ortolaza, A.; Lash, J.; Wider, C.; Wojtas, A.; DeJesus-Hernandez, M.; et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 2011, 44, 200–205. [Google Scholar] [CrossRef]
- Giau, V.V.; Senanarong, V.; Bagyinszky, E.; An, S.S.A.; Kim, S. Analysis of 50 neurodegenerative genes in clinically diagnosed early-onset Alzheimer’s disease. Int. J. Mol. Sci. 2019, 20, 1514. [Google Scholar] [CrossRef]
- Sassi, C.; Nalls, M.A.; Ridge, P.G.; Gibbs, J.R.; Lupton, M.K.; Troakes, C.; Lunnon, K.; Al-Sarraj, S.; Brown, K.S.; Medway, C.; et al. Mendelian adult-onset leukodystrophy genes in Alzheimer’s disease: Critical influence of CSF1R and NOTCH3. Neurobiol. Aging 2018, 66, 179.e17–179.e29. [Google Scholar] [CrossRef]
PD | Controls | Total | p Value | |
---|---|---|---|---|
Number | 502 | 511 | 1013 | |
Age (years) | 63.64 ± 10.76 (age at onset) | 63.38 ± 11.90 | 63.51 ± 11.35 | 0.72 |
Gender (female/male) | 253/249 | 252/259 | 505/508 | 0.73 |
Hohn and Yahr stage | ||||
I | 170 (33.9%) | |||
II | 197 (39.2%) | |||
III | 101 (20.1%) | |||
IV | 25 (5.0%) | |||
V | 9 (1.8%) |
PD (%) | Controls (%) | OR (95% CI) | p Value | |
---|---|---|---|---|
Overall | 502 | 511 | ||
Genotype frequency | ||||
CC | 184 (36.7%) | 155 (30.3%) | 1.00 | |
CT | 247 (49.2%) | 261 (51.1%) | 0.80 (0.61–1.05) | 0.107 |
TT | 71 (14.1%) | 95 (18.6%) | 0.63 (0.43–0.92) | 0.015 |
Dominant model | ||||
CC | 184 (36.7%) | 155 (30.3%) | 1.00 | |
CT + TT | 318 (63.3%) | 356 (69.7%) | 0.75 (0.58–0.98) | 0.033 |
Recessive model | ||||
CT + CC | 431 (85.9%) | 416 (81.4%) | 1.00 | |
TT | 71 (14.1%) | 95 (18.6%) | 0.72 (0.52–1.01) | 0.056 |
Allele frequency | ||||
Major allele (C) | 615 (61.3%) | 571 (55.9%) | 1.00 | |
Minor allele (T) | 389 (38.7%) | 451 (44.1%) | 0.80 (0.67–0.96) | 0.014 |
EOPD | 60 | 78 | ||
Genotype frequency | ||||
CC | 27 (45.0%) | 24 (30.8%) | 1.00 | |
CT | 27 (45.0%) | 43 (55.1%) | 0.56 (0.27–1.16) | 0.116 |
TT | 6 (10.0%) | 11 (14.1%) | 0.48 (0.16–1.51) | 0.208 |
Allele frequency | ||||
Major allele (C) | 81 (67.5%) | 91 (58.3%) | 1.00 | |
Minor allele (T) | 39 (32.5%) | 65 (41.7%) | 0.67 (0.41–1.11) | 0.119 |
LOPD | 442 | 433 | ||
Genotype frequency | ||||
CC | 157 (35.5%) | 131 (30.3%) | 1.00 | |
CT | 220 (49.8%) | 218 (50.3%) | 0.84 (0.63–1.13) | 0.259 |
TT | 65 (14.7%) | 84 (19.4%) | 0.65 (0.43–0.96) | 0.031 |
Allele frequency | ||||
Major allele (C) | 534 (60.4%) | 480 (55.4%) | 1.00 | |
Minor allele (T) | 350 (39.6%) | 386 (44.6%) | 0.82 (0.67–0.99) | 0.035 |
Female | 253 | 252 | ||
Genotype frequency | ||||
CC | 89 (35.2%) | 75 (29.8%) | 1.00 | |
CT | 128 (50.6%) | 130 (51.6%) | 0.83 (0.56–1.23) | 0.351 |
TT | 36 (14.2%) | 47 (18.7%) | 0.65 (0.38–1.10) | 0.106 |
Allele frequency | ||||
Major allele (C) | 306 (60.5%) | 280 (55.6%) | 1.00 | |
Minor allele (T) | 200 (39.5%) | 224 (44.4%) | 0.82 (0.64–1.05) | 0.113 |
Male | 249 | 259 | ||
Genotype frequency | ||||
CC | 95 (38.2%) | 80 (30.9%) | 1.00 | |
CT | 119 (47.8%) | 131 (50.6%) | 0.77 (0.52–1.13) | 0.175 |
TT | 35 (14.1%) | 48 (18.5%) | 0.61 (0.36–1.04) | 0.069 |
Allele frequency | ||||
Major allele (C) | 309 (62.0%) | 291 (56.2%) | 1.00 | |
Minor allele (T) | 189 (38.0%) | 227 (43.8%) | 0.78 (0.61–1.01) | 0.057 |
PD (%) | Controls (%) | OR (95% CI) | p Value | |
---|---|---|---|---|
Overall | 502 | 511 | ||
Genotype frequency | ||||
TT | 199 (39.6%) | 188 (36.8%) | 1.00 | |
CT | 233 (46.4%) | 241 (47.2%) | 0.91 (0.70–1.20) | 0.509 |
CC | 70 (13.9%) | 82 (15.9%) | 0.81 (0.55–1.18) | 0.263 |
Dominant model | ||||
TT | 199 (39.6%) | 188 (36.8%) | 1.00 | |
CT + CC | 303 (60.4%) | 323 (63.2%) | 0.89 (0.69–1.14) | 0.351 |
Recessive model | ||||
CT + TT | 432 (86.1%) | 429 (84.0%) | 1.00 | |
CC | 70 (13.9%) | 82 (16.0%) | 0.85 (0.60–1.20) | 0.349 |
Allele frequency | ||||
Major allele (T) | 631 (62.8%) | 617 (67.8%) | 1.00 | |
Minor allele (C) | 373 (37.2%) | 405 (39.6%) | 0.90 (0.75–1.08) | 0.253 |
EOPD | 60 | 78 | ||
Genotype frequency | ||||
TT | 18 (30.0%) | 27 (34.6%) | 1.00 | |
CT | 33 (55.0%) | 33 (42.3%) | 1.50 (0.70–3.23) | 0.301 |
CC | 9 (15.0%) | 18 (23.1%) | 0.75 (0.28–2.03) | 0.572 |
Allele frequency | ||||
Major allele (T) | 69 (57.5%) | 87 (55.8%) | 1.00 | |
Minor allele (C) | 51 (42.5%) | 69 (44.2%) | 0.93 (0.58–1.51) | 0.774 |
LOPD | 442 | 433 | ||
Genotype frequency | ||||
TT | 181 (41.0%) | 161 (37.2%) | 1.00 | |
CT | 200 (45.2%) | 207 (47.8%) | 0.86 (0.64–1.15) | 0.304 |
CC | 61 (13.8%) | 65 (15.0%) | 0.83 (0.55–1.26) | 0.386 |
Allele frequency | ||||
Major allele (T) | 562 (63.6%) | 529 (61.1%) | 1.00 | |
Minor allele (C) | 322 (36.4%) | 337 (38.9%) | 0.90 (0.74–1.09) | 0.284 |
Female | 253 | 252 | ||
Genotype frequency | ||||
TT | 94 (37.2%) | 92 (36.5%) | 1.00 | |
CT | 122 (48.2%) | 120 (47.6%) | 1.00 (0.68–1.46) | 0.980 |
CC | 37 (14.6%) | 40 (15.9%) | 0.91 (0.53–1.54) | 0.713 |
Allele frequency | ||||
Major allele (T) | 310 (61.3%) | 304 (60.3%) | 1.00 | |
Minor allele (C) | 196 (38.7%) | 200 (39.7%) | 0.96 (0.75–1.24) | 0.758 |
Male | 249 | 259 | ||
Genotype frequency | ||||
TT | 105 (42.2%) | 96 (37.1%) | 1.00 | |
CT | 111 (44.6%) | 121 (46.7%) | 0.84 (0.57–1.22) | 0.362 |
CC | 33 (13.3%) | 42 (16.2%) | 0.72 (0.42–1.23) | 0.224 |
Allele frequency | ||||
Major allele (T) | 321 (64.5%) | 313 (60.4%) | 1.00 | |
Minor allele (C) | 177 (35.5%) | 205 (39.6%) | 0.84 (0.65–1.09) | 0.185 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.-H.; Wu, Y.-R.; Chen, Y.-C.; Wu, H.-C.; Chen, C.-M. Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan. J. Clin. Med. 2019, 8, 1529. https://doi.org/10.3390/jcm8101529
Chang K-H, Wu Y-R, Chen Y-C, Wu H-C, Chen C-M. Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan. Journal of Clinical Medicine. 2019; 8(10):1529. https://doi.org/10.3390/jcm8101529
Chicago/Turabian StyleChang, Kuo-Hsuan, Yih-Ru Wu, Yi-Chun Chen, Hsiu-Chuan Wu, and Chiung-Mei Chen. 2019. "Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan" Journal of Clinical Medicine 8, no. 10: 1529. https://doi.org/10.3390/jcm8101529
APA StyleChang, K.-H., Wu, Y.-R., Chen, Y.-C., Wu, H.-C., & Chen, C.-M. (2019). Association between CSF1 and CSF1R Polymorphisms and Parkinson’s Disease in Taiwan. Journal of Clinical Medicine, 8(10), 1529. https://doi.org/10.3390/jcm8101529