Acute Effects of Intermittent Versus Continuous Bilateral Ankle Plantar Flexor Static Stretching on Postural Sway and Plantar Pressures: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
3. Measures
3.1. Variables
3.2. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ©Falls. Available online: http://www.who.int/news-room/fact-sheets/detail/falls (accessed on 24 May 2018).
- Pua, Y.-H.; Ong, P.-H.; Clark, R.A.; Matcher, D.B.; Lim, E.C.W. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: Prospective cohort study. BMC Geriatr. 2017, 17, 291. [Google Scholar] [CrossRef] [PubMed]
- Avela, J.; Finni, T.; Liikavainio, T.; Niemelä, E.; Komi, P.V. Neural and mechanical responses of the triceps surae muscle group after 1 h of repeated fast passive stretches. J. Appl. Physiol. 2004, 96, 2325–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trajano, G.S.; Nosaka, K.B.; Seitz, L.; Blazevich, A.J. Intermittent Stretch Reduces Force and Central Drive more than Continuous Stretch. Med. Sci. Sport Exerc. 2014, 46, 902–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, J.C.; Greene, R.; Young, J.D.; Hodgson, D.D.; Blazevich, A.J.; Behm, D.G. The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties. Eur. J. Appl. Physiol. 2018, 118, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. 2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Jancová, J. Measuring the balance control system-review. Acta Med. 2008, 51, 129–137. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Gollhofer, A.; Granacher, U. Relationship Between Measures of Balance and Strength in Middle-Aged Adults. J. Strength Cond. Res. 2012, 26, 2401–2407. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Bambury, A.; Cahill, F.; Power, K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med. Sci. Sports Exerc. 2004, 36, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.B.P.; Graves, B.B.S.; Whitehurst, M.; Jacobs, P.L. The Acute Effects of Different Durations of Static Stretching on Dynamic Balance Performance. Strength Cond. 2009, 23, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.-I.; Nam, H.-C.; Jung, K.-S. Effects on Hamstring Muscle Extensibility, Muscle Activity, and Balance of Different Stretching Techniques. J. Phys. Ther. Sci. 2014, 26, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzopoulos, D.; Galazoulas, C.; Patikas, D.; Kotzamanidis, C. Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. J. Sports Sci. Med. 2014, 13, 403–409. [Google Scholar]
- Leblebici, H.; Yarar, H.; Aydın, E.M.; Zorlu, Z.; Ertaş, U.; Kıngır, M.E. The Acute Effects of Different Stretching on Dynamic Balance Performance. Int. J. Sport Stud. 2017, 7, 2251–7502. [Google Scholar]
- Gribble, P.A.; Hertel, J. Effect of hip and ankle muscle fatigue on unipedal postural control. J. Electromyogr. Kinesiol. 2004, 14, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanz, D.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Martínez-Jiménez, E.M.; Muñoz-García, D.; Pérez-Boal, E.; Calvo-Lobo, C.; López-López, D. Effects of Compressive Stockings and Standard Stockings in Skin Temperature and Pressure Pain Threshold in Runners with Functional Ankle Equinus Condition. J. Clin. Med. 2018, 7, 454. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanz, D.; Becerro-de-Bengoa-Vallejo, R.; López-López, D.; Calvo-Lobo, C.; Martínez Jiménez, E.M.; Perez-Boal, E.; Losa-Iglesias, M.E.; Palomo-López, P. Slow velocity of the center of pressure and high heel pressures may increase the risk of Sever’s disease: A case-control study. BMC Pediatr. 2018, 18, 357. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Sanz, D.; Losa-Iglesias, M.E.; Becerro de Bengoa-Vallejo, R.; Palomo-Lopez, P.; Beltran-Alacreu, H.; Calvo-Lobo, C.; Navarro-Flores, E.; Lopez-Lopez, D. Skin temperature in youth soccer players with functional equinus and non-equinus condition after running. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2020–2024. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanz, D.; Losa-Iglesias, M.E.; López-López, D.; Calvo-Lobo, C.; Palomo-López, P.; Becerro-de-Bengoa-Vallejo, R. Infrared thermography applied to lower limb muscles in elite soccer players with functional ankle equinus and non-equinus condition. PeerJ 2017, 5, e3388. [Google Scholar] [CrossRef]
- Romero Morales, C.; Calvo Lobo, C.; Rodríguez Sanz, D.; Sanz Corbalán, I.; Ruiz Ruiz, B.; López López, D. The concurrent validity and reliability of the Leg Motion system for measuring ankle dorsiflexion range of motion in older adults. PeerJ 2017, 5, e2820. [Google Scholar] [CrossRef]
- Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodriguez-Sanz, D. Static and dynamic plantar pressures in children with and without sever disease: A case-control study. Phys. Ther. 2014, 94, 818–826. [Google Scholar] [CrossRef]
- Becerro de Bengoa Vallejo, R.; Losa Iglesias, M.E.; Rodríguez Sanz, D.; Prados Frutos, J.C.; Salvadores Fuentes, P.; Chicharro, J.L. Plantar pressures in children with and without sever’s disease. J. Am. Podiatr. Med. Assoc. 2011, 101, 17–24. [Google Scholar] [CrossRef]
- Lima, B.N.; Lucareli, P.R.G.; Gomes, W.A.; Silva, J.J.; Bley, A.S.; Hartigan, E.H.; Marchetti, P.H. The Acute Effects of Unilateral Ankle Plantar Flexors Static-Stretching on Postural Sway and Gastrocnemius Muscle Activity during Single-Leg Balance Tasks. J. Sport Sci. Med. 2014, 13, 564–570. [Google Scholar]
- Padgett, P.K.; Jacobs, J.V.; Kasser, S.L. Is the BESTest at Its Best? A Suggested Brief Version Based on Interrater Reliability, Validity, Internal Consistency, and Theoretical Construct. Phys. Ther. 2012, 92, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Scharfbillig, R.; Scutter, S.D. Measurement of foot dorsiflexion: A modified Lidcombe template. J. Am. Podiatr. Med. Assoc. 2004, 94, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.L.; McPoil, T.G. Reliability of Ankle Goniometric Measurements. J. Am. Podiatr. Med. Assoc. 2005, 95, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, M.; Lee, Y.J.; Aruin, A.S. The effect of lateral or medial wedges on control of postural sway in standing. Gait Posture 2014, 39, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.; Drużbicki, M.; Przysada, G.; Śpiewak, D. Assessment of standing balance in patients after ankle fractures. Acta Bioeng. Biomech. 2014, 16, 59–65. [Google Scholar]
- Shim, J.-M.; Jung, J.-H.; Kim, H.-H. The effects of plantar flexor static stretching and dynamic stretching using an aero-step on foot pressure during gait in healthy adults: A preliminary study. J. Phys. Ther. Sci. 2015, 27, 2155–2157. [Google Scholar] [CrossRef]
- Babault, N.; Kouassi, B.Y.L.; Desbrosses, K. Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J. Sci. Med. Sport 2010, 13, 247–252. [Google Scholar] [CrossRef]
- Zito, M.; Driver, D.; Parker, C.; Bohannon, R. Lasting effects of one bout of two 15 s passive stretches on ankle dorsiflexion range of motion. J. Orthop. Sports Phys. Ther. 1997, 26, 214–221. [Google Scholar] [CrossRef]
- Behm, D.G.; Kibele, A. Effects of differing intensities of static stretching on jump performance. Eur. J. Appl. Physiol. 2007, 101, 587–594. [Google Scholar] [CrossRef]
- Yoo, S.D.; Kim, H.S.; Lee, J.H.; Yun, D.H.; Kim, D.H.; Chon, J.; Lee, S.A.; Han, Y.J.; Soh, Y.S.; Kim, Y.; et al. Biomechanical Parameters in Plantar Fasciitis Measured by Gait Analysis System With Pressure Sensor. Ann. Rehabil. Med. 2017, 41, 979–989. [Google Scholar] [CrossRef] [Green Version]
- Downey, M.; Banks, A. Gastrocnemius recession in the treatment of nonspastic ankle equinus. A retrospective study. J. Am. Podiatr. Med. Assoc. 1989, 79, 159–174. [Google Scholar] [CrossRef]
- Gajdosik, R.L.; Vander Linden, D.W.; McNair, P.J.; Williams, A.K.; Riggin, T.J. Effects of an eight-week stretching program on the passive-elastic properties and function of the calf muscles of older women. Clin. Biomech. 2005, 20, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.-Y.; Tsai, K.-H.; Chen, J.-J. Effects of Prolonged Muscle Stretching With Constant Torque or Constant Angle on Hypertonic Calf Muscles. Arch. Phys. Med. Rehabil. 2005, 86, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Nordez, A.; McNair, P.; Casari, P.; Cornu, C. Acute Changes in Hamstrings Musculo-Articular Dissipative Properties Induced by Cyclic and Static Stretching. Int. J. Sports Med. 2008, 29, 414–418. [Google Scholar] [CrossRef] [Green Version]
- McNair, P.J.; Dombroski, E.W.; Hewson, D.J.; Stanley, S.N. Stretching at the ankle joint: Viscoelastic responses to holds and continuous passive motion. Med. Sci. Sports Exerc. 2001, 33, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.E.; Crowther, R.G.; Lazzarini, P.A.; Sangla, K.S.; Wearing, S.; Buttner, P.; Golledge, J. Plantar pressures are higher in cases with diabetic foot ulcers compared to controls despite a longer stance phase duration. BMC Endocr. Disord. 2016, 16, 51. [Google Scholar] [CrossRef]
- Cortina, R.E.; Morris, B.L.; Vopat, B.G. Gastrocnemius Recession for Metatarsalgia. Foot Ankle Clin. 2018, 23, 57–68. [Google Scholar] [CrossRef]
- Munteanu, S.E.; Barton, C.J. Lower limb biomechanics during running in individuals with achilles tendinopathy: A systematic review. J. Foot Ankle Res. 2011, 4, 15. [Google Scholar] [CrossRef]
- Morrin, N.; Redding, E. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers. J. Dance Med. Sci. 2013, 17, 34–40. [Google Scholar] [CrossRef]
- Bouvier, T.; Opplert, J.; Cometti, C.; Babault, N. Acute effects of static stretching on muscle–tendon mechanics of quadriceps and plantar flexor muscles. Eur. J. Appl. Physiol. 2017, 117, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Anson, J.; Waddington, G.; Adams, R.; Liu, Y. The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury. Biomed. Res. Int. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
Variable Total (n = 24) | Total Group Mean ± SD (CI 95%) | Continuous Group Mean ± SD (CI 95%) | Intermittent Group Mean ± SD (CI 95%) | p-Value * |
---|---|---|---|---|
Age (years) | 32.12 ± 7.60 (29.08–35.16) | 32.20 ± 8.08 (28.97–35.44) | 32.04 ± 7.28 (29.18–34.89) | 0.940 |
Weight (kg) | 62.72 ± 8.97 (59.14–66.31) | 62.77 ± 9.52 (58.96–66.57) | 62.68 ± 8.58 (59.32–66.05) | 0.975 |
Height (cm) | 166.64 ± 8.13 (163.39–169.90) | 166.20 ± 8.43 (162.83–169.58) | 167.08 ± 7.98 (163.95–170.21) | 0.714 |
BMI (kg/m2) | 22.58 ± 2.75 (21.48–23.69) | 22.71 ± 2.90 (21.55–23.87) | 22.46 ± 2.66 (21.41–23.50) | 0.753 |
Size of shoe | 38.87 ± 2.32 (37.94–39.80) | 38.81 ± 2.26 (37.90–39.72) | 38.93 ± 2.43 (37.98–39.89) | 0.855 |
Specification | Description |
---|---|
Size (length × width × height) | 530 × 600 × 45 mm |
Thickness | 4 mm |
Active surface | 400 × 400 mm |
Weight | 6.8 kg |
Sensors | Calibrated resistive |
Sensor | 8 × 8 mm |
Sensor thickness | 0.15 mm |
No. of sensors | 2304 (48 × 48) |
Permissible temperature | −40 °C to 85 °C |
Sensor pressure (minimum/maximum) | 0.4 N/m2 (0.0004 kPa)/100 N/m2 (0.1 kPa) |
Type of PC interface/platform | Universal Serial Bus (USB) |
Supply | USB cable |
Data acquisition frequency | 200 images/s |
Vertical force recording | 60 Hz |
Operating system required | Windows XP, Vista, or 7 |
Variable | Intermittent Group Pretest Values (n = 20) Mean ± SD (CI 95%) | Continuous Group Pretest Values (n = 20) Mean ± SD (CI 95%) | p-value * |
---|---|---|---|
Rearfoot maximum pressure (kPa) | 106.24 ± 21.36 (97.00–115.48) | 105.52 ± 24.08 (95.02–105.93) | 0.918 |
Rearfoot medium pressure (kPa) | 39.61 ± 6.51 (36.79–42.43) | 41.59 ± 8.96 (37.71–45.46) | 0.483 |
Rearfoot surface (cm2) | 85.84 ± 10.51 (81.30–90.39) | 84.71 ± 10.33 (80.25–89.18) | 0.828 |
Midfoot maximum pressure (kPa) | 13.05 ± 14.82 (6.64–19.46) | 11.18 ± 11.69 (6.12–16.23) | 0.865 |
Midfoot medium pressure (kPa) | 5.72 ± 6.10 (3.08–8.36) | 5.63 ± 5.68 (3.17–8.09) | 0.966 |
Midfoot surface (cm2) | 16.71 ± 19.08 (8.46–24.96) | 17.93 ± 20.07 (9.25–26.61) | 0.787 |
Forefoot maximum pressure (kPa) | 69.41 ± 13.19 (63.71–75.12) | 70.16 ± 10.36 (65.68–74.64) | 0.606 |
Forefoot medium pressure (kPa) | 25.54 ± 6.07 (22.91–28.16) | 25.23 ± 2.77 (24.03–26.43) | 0.338 |
Forefoot surface(cm2) | 94.15 ± 17.75 (86.47–101.82) | 90.02 ± 12.02 (84.81–95.22) | 0.496 |
X displacement eyes open (mm) | 6.91 ± 6.14 (4.26–9.57) | 8.34 ± 9.01 (6.49–10.19) | 0.083 |
Y displacement eyes open (mm) | 16.68 ± 9.89 (12.40–20.95) | 19.32 ± 9.01 (15.43–23.22) | 0.359 |
Surface Eyes Open (mm2) | 13.35 ± 9.58 (9.21–17.50) | 9.83 ± 7.12 (6.75–12.92) | 0.180 |
Medium speed of the laterolateral displacement. Eyes open (mm/s) | 1.20 ± 0.27 (1.08–1.32) | 1.16 ± 0.28 (1.03–1.28) | 0.657 |
Medium speed of the anteroposterior displacement. Eyes open (mm/s) | 0.98 ± 0.26 (0.87–1.10) | 1.04 ± 0.39 (0.87–1.21) | 0.542 |
X displacement eyes closed (mm) | 7.74 ± 5.05 (5.55–9.92) | 7.61 ± 4.40 (5.71–9.52) | 0.926 |
Y displacement eyes closed (mm) | 17.08 ± 9.93 (12.78–21.37) | 21.34 ± 9.46 (17.24–25.43) | 0.164 |
Surface eyes closed (mm2) | 25.96 ± 14.77 (19.57–32.34) | 32.44 ± 52.54 (9.71–55.16) | 0.599 |
Medium speed of the laterolateral displacement. Eyes closed (mm/s) | 1.39 ± 0.36 (1.23–1.55) | 1.37 ± 0.42 (1.19–1.56) | 0.788 |
Medium speed of the anteroposterior displacement. Eyes closed (mm/s) | 1.48 ± 0.58 (1.22–1.73) | 1.41 ± 0.70 (1.10–1.72) | 0.332 |
Variable | Intermittent Group Posttest Values (n = 20) Mean ± SD (CI 95%) | Continuous Group Posttest Values (n = 20) Mean ± SD (CI 95%) | p-Value * |
---|---|---|---|
Rearfoot maximum pressure (kPa) | 87.56 ± 22.77 (77.71–97.41) | 99.39 ± 18.76 (91.28–107.51) | 0.019 |
Rearfoot medium pressure (kPa) | 33.84 ± 7.44 (30.62–37.06) | 37.19 ± 5.38 (34.86–39.51) | 0.105 |
Rearfoot surface (cm2) | 81.86 ± 12.11 (76.62–87.10) | 83.54 ± 13.11 (77.87–89.21) | 0.703 |
Midfoot maximum pressure (kPa) | 14.73 ± 13.98 (8.68–20.78) | 15.58 ± 14.85 (9.16–22.01) | 0.983 |
Midfoot medium pressure (kPa) | 7.05 ± 6.55 (4.21–9.88) | 7.54 ± 6.22 (4.85–10.23) | 0.761 |
Midfoot surface (cm2) | 20.78 ± 18.67 (12.70–28.85) | 20.56 ± 19.08 (12.31–28.81) | 0.957 |
Forefoot maximum pressure (kPa) | 74.16 ± 15.62 (67.41–80.92) | 73.14 ± 15.38 (66.48–79.79) | 0.332 |
Forefoot medium pressure (kPa) | 26.98 ± 4.29 (25.12–28.84) | 26.72 ± 6.73 (23.81–29.63) | 0.322 |
Forefoot surface (cm2) | 105.23 ± 18.32) (97.31–113.16) | 97.36 ± 12.98 (91.75–102.98) | 0.038 |
X displacement eyes open (mm) | 8.48 ± 5.23 (6.22–10.75) | 7.32 ± 4.89 (5.20–9.44) | 0.353 |
Y displacement eyes open (mm) | 15.89 ± 8.39 (12.26–19.51) | 18.29 ± 10.84 (13.60–22.98) | 0.409 |
Surface eyes open (mm2) | 6.34 ± 4.08 (4.57–8.10) | 11.02 ± 8.58 (7.31–14.74) | 0.031 |
Medium speed of the laterolateral displacement. Eyes open (mm/s) | 1.19 ± 0.31 (1.05–1.32) | 1.35 ± 0.71 (1.04–1.66) | 0.910 |
Medium speed of the anteroposterior displacement. Eyes open (mm/s) | 1.15 ± 0.65 (0.87–1.43) | 1.02 ± 0.57 (0.77–1.27) | 0.474 |
X displacement eyes closed (mm) | 7.97 ± 5.86 (5.43–10.50) | 6.51 ± 4.09 (4.74–8.29) | 0.557 |
Y displacement eyes closed (mm) | 15.54 ± 9.53 (11.42–19.66) | 16.90 ± 9.62 (12.74–21.06) | 0.640 |
Surface eyes closed (mm2) | 18.24 ± 12.29 (12.93–23.56) | 23.17 ± 16.36 (16.09–30.24) | 0.167 |
Medium speed of the laterolateral displacement. Eyes closed (mm/s) | 1.54 ± 0.47 (1.34–1.75) | 1.43 ± 0.85 (1.07–1.80) | 0.051 |
Medium speed of the anteroposterior displacement. Eyes closed (mm/s) | 1.79 ± 0.87 (1.42–2.17) | 1.89 ± 2.31 (0.89–2.89) | 0.083 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Jiménez, E.M.; Losa-Iglesias, M.E.; Díaz-Velázquez, J.I.; Becerro-De-Bengoa-Vallejo, R.; Palomo-López, P.; Calvo-Lobo, C.; López-López, D.; Rodríguez-Sanz, D. Acute Effects of Intermittent Versus Continuous Bilateral Ankle Plantar Flexor Static Stretching on Postural Sway and Plantar Pressures: A Randomized Clinical Trial. J. Clin. Med. 2019, 8, 52. https://doi.org/10.3390/jcm8010052
Martínez-Jiménez EM, Losa-Iglesias ME, Díaz-Velázquez JI, Becerro-De-Bengoa-Vallejo R, Palomo-López P, Calvo-Lobo C, López-López D, Rodríguez-Sanz D. Acute Effects of Intermittent Versus Continuous Bilateral Ankle Plantar Flexor Static Stretching on Postural Sway and Plantar Pressures: A Randomized Clinical Trial. Journal of Clinical Medicine. 2019; 8(1):52. https://doi.org/10.3390/jcm8010052
Chicago/Turabian StyleMartínez-Jiménez, Eva María, Marta Elena Losa-Iglesias, Jose Ignacio Díaz-Velázquez, Ricardo Becerro-De-Bengoa-Vallejo, Patricia Palomo-López, César Calvo-Lobo, Daniel López-López, and David Rodríguez-Sanz. 2019. "Acute Effects of Intermittent Versus Continuous Bilateral Ankle Plantar Flexor Static Stretching on Postural Sway and Plantar Pressures: A Randomized Clinical Trial" Journal of Clinical Medicine 8, no. 1: 52. https://doi.org/10.3390/jcm8010052
APA StyleMartínez-Jiménez, E. M., Losa-Iglesias, M. E., Díaz-Velázquez, J. I., Becerro-De-Bengoa-Vallejo, R., Palomo-López, P., Calvo-Lobo, C., López-López, D., & Rodríguez-Sanz, D. (2019). Acute Effects of Intermittent Versus Continuous Bilateral Ankle Plantar Flexor Static Stretching on Postural Sway and Plantar Pressures: A Randomized Clinical Trial. Journal of Clinical Medicine, 8(1), 52. https://doi.org/10.3390/jcm8010052