Predictors of Active Extravasation and Complications after Conventional Angiography for Acute Intraabdominal Bleeding
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. Predictors of Active Contrast Extravasation
3.2. Predictors of Extravasation among Patients with GIB
3.3. Adverse Events Following Angiography for Patients with Intraabdominal Bleeding
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, J.H.; Shin, J.H.; Yoon, H.K.; Chae, E.Y.; Myung, S.J.; Ko, G.Y.; Gwon, D.I.; Sung, K.B. Angiographically negative acute arterial upper and lower gastrointestinal bleeding: Incidence, predictive factors, and clinical outcomes. Korean J. Radiol. 2009, 10, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Zuckerman, G.R. Acute small bowel bleeding: A distinct entity with significantly different economic implications compared with GI bleeding from other locations. Gastrointes. Endosc. 2003, 58, 330–335. [Google Scholar] [CrossRef]
- Sanders, D.S.; Perry, M.J.; Jones, S.G.; McFarlane, E.; Johnson, A.G.; Gleeson, D.C.; Lobo, A.J. Effectiveness of an upper-gastrointestinal haemorrhage unit: A prospective analysis of 900 consecutive cases using the Rockall score as a method of risk standardisation. Eur. J. Gastroenterol. Hepatol. 2004, 16, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Van Leerdam, M.E.; Vreeburg, E.M.; Rauws, E.A.; Geraedts, A.A.; Tijssen, J.G.; Reitsma, J.B.; Tytgat, G.N. Acute upper GI bleeding: Did anything change? Time trend analysis of incidence and outcome of acute upper GI bleeding between 1993/1994 and 2000. Am. J. Gastroenterol. 2003, 98, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.M.; Anain, P.; Geisinger, M.; Vogt, D.; Mayes, J.; Grundfest-Broniatowski, S.; Henderson, J.M. Role of angiography and embolization for massive gastroduodenal hemorrhage. J. Gastrointest. Surg. 1999, 3, 61–65. [Google Scholar] [CrossRef]
- Jaeckle, T.; Stuber, G.; Hoffmann, M.H.; Jeltsch, M.; Schmitz, B.L.; Aschoff, A.J. Detection and localization of acute upper and lower gastrointestinal (GI) bleeding with arterial phase multi-detector row helical CT. Eur. Radiol. 2008, 18, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Raphaeli, T.; Menon, R. Current treatment of lower gastrointestinal hemorrhage. Clin. Colon Rectal Surg. 2012, 25, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.; Jeong, Y.Y.; Shin, S.S.; Lim, H.S.; Song, S.G.; Jang, N.G.; Kim, J.K.; Kang, H.K. Acute massive gastrointestinal bleeding: Detection and localization with arterial phase multi-detector row helical CT. Radiology 2006, 239, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Cocanour, C.S. Blunt splenic injury. Curr. Opin. Crit. Care 2010, 16, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Hak, D.J.; Smith, W.R.; Suzuki, T. Management of hemorrhage in life-threatening pelvic fracture. J. Am. Acad. Orthop. Surg. 2009, 17, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Harms, J.; Helmberger, H.; Golder, W.; Heidecke, C.D. Interventional radiology in the treatment of blunt liver trauma: Case report with review of literature. Bildgeb. Imaging 1996, 63, 51–54. [Google Scholar]
- Pelage, J.P.; Le Dref, O.; Jacob, D.; Soyer, P.; Rossignol, M.; Truc, J.; Payen, D.; Rymer, R. Uterine artery embolization: Anatomical and technical considerations, indications, results, and complications. J. Radiol. 2000, 81, 1863–1872. [Google Scholar] [PubMed]
- Kuo, W.T.; Lee, D.E.; Saad, W.E.; Patel, N.; Sahler, L.G.; Waldman, D.L. Superselective microcoil embolization for the treatment of lower gastrointestinal hemorrhage. J. Vasc. Interv. Radiol. JVIR 2003, 14, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, H.P.; Schoch, E.; Jost, R.; Decurtins, M.; Zollikofer, C.L. Superselective coil embolization in acute gastrointestinal hemorrhage: personal experience in 10 patients and review of the literature. J. Vasc. Interv. Radiol. JVIR 1998, 9, 753–760. [Google Scholar] [CrossRef]
- Hastings, G.S. Angiographic localization and transcatheter treatment of gastrointestinal bleeding. Radiographics 2000, 20, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Nusbaum, M.; Baum, S. Radiographic demonstration of unknown sites of gastrointestinal bleeding. Surg. Forum 1963, 14, 374. [Google Scholar] [PubMed]
- Nicola, R.; Shaqdan, K.W.; Aran, K.; Mansouri, M.; Singh, A.; Abujudeh, H.H. Contrast-induced nephropathy: Identifying the risks, choosing the right agent, and reviewing effective prevention and management metho. Curr. Probl. Diagn. Radiol. 2015, 44, 501–504. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, E.A.; Schuster, K.M.; Kaplan, L.J.; Maung, A.A.; Lui, F.Y.; Maerz, L.L.; Johnson, D.C.; Davis, K.A. Contrast-induced nephropathy in elderly trauma patients. J. Trauma 2010, 68, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Bookstein, J.J.; Chlosta, E.M.; Foley, D.; Walter, J.F. Transcatheter hemostasis of gastrointestinal bleeding using modified autogenous clot. Radiology 1974, 113, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Gianturco, C.; Anderson, J.H.; Wallace, S. Mechanical devices for arterial occlusion. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1975, 124, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, L.E.; Bookstein, J.J. Transcatheter embolization for treatment of diverticular hemorrhage. Radiology 1977, 122, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.M.; Bissett, I.P.; Holden, A.; Woodfield, J.C.; Parry, B.R.; Duncan, D. Clinical variables associated with positive angiographic localization of lower gastrointestinal bleeding. ANZ J. Surg. 2005, 75, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Iqbal, S.; Najmeh, S.; Fata, P.; Razek, T.; Khwaja, K. Mesenteric angiography for acute gastrointestinal bleed: Predictors of active extravasation and outcomes. Can. J. Surg. 2012, 55, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Rasuli, P.; Doumit, J.; Boulos, M.; Rizk, C.; Doumit, G. Factors influencing the yield of mesenteric angiography in lower gastrointestinal bleed. World J. Radiol. 2014, 6, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Manske, C.L.; Sprafka, J.M.; Strony, J.T.; Wang, Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am. J. Med. 1990, 89, 615–620. [Google Scholar] [CrossRef]
- Hoste, E.J.; Doom, S.; De Waele, J.; Delrue, L.; Defreyne, L.; Benoit, D.; Decruyenaere, J. Epidemiology of contrast-associated acute kidney injury in ICU patients: A retrospective cohort analysis. Intensive Care Med. 2011, 37, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, T.G.; Bulugahapitiya, S. Contrast-induced nephropathy. Am. J. Roentgenol. 2004, 183, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Garfinkle, M.A.; Stewart, S.; Basi, R. Incidence of CT contrast agent-induced nephropathy: Toward a more accurate estimation. AJR Am. J. Roentgenol. 2015, 204, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.; Gines, P.; Uriz, J.; Bessa, X.; Salmeron, J.M.; Mas, A.; Ortega, R.; Calahorra, B.; De Las Heras, D.; Bosch, J.; et al. Renal failure after upper gastrointestinal bleeding in cirrhosis: Incidence, clinical course, predictive factors, and short-term prognosis. Hepatology 2001, 34, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.; Lameire, N.H.; Vanholder, R.C.; Benoit, D.D.; Decruyenaere, J.M.; Colardyn, F.A. Acute renal failure in patients with sepsis in a surgical ICU: Predictive factors, incidence, comorbidity, and outcome. J. Am. Soc. Nephrol. 2003, 14, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.S.; McDonald, R.J.; Comin, J.; Williamson, E.E.; Katzberg, R.W.; Murad, M.H.; Kallmes, D.F. Frequency of acute kidney injury following intravenous contrast medium administration: A systematic review and meta-analysis. Radiology 2013, 267, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Feldkamp, T.; Baumgart, D.; Elsner, M.; Herget-Rosenthal, S.; Pietruck, F.; Erbel, R.; Philipp, T.; Kribben, A. Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin. Nephrol. 2006, 66, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Watanabe, M.; Aonuma, K.; Hirayama, A.; Tamaki, N.; Tsutsui, H.; Murohara, T.; Ogawa, H.; Akasaka, T.; Yoshimura, M.; et al. Proteinuria and reduced estimated glomerular filtration rate are independent risk factors for contrast-induced nephropathy after cardiac catheterization. Circ. J. 2015, 79, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Moos, S.I.; van Vemde, D.N.; Stoker, J.; Bipat, S. Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: A meta-analysis. Eur. J. Radiol. 2013, 82, e387–e399. [Google Scholar] [CrossRef] [PubMed]
Variable | No Extravasation | Extravasation | p Value |
---|---|---|---|
n | 55 | 20 | |
Age | 60 (2.5) | 57 (4.6) | 0.59 |
Gender (% Male) | 64% | 60% | 0.77 |
Urine output (mL) * | 1207 (169) | 1067 (340) | 0.32 |
pRBC (units) | 1.6 (0.3) | 0.5 (0.2) | 0.02 |
Fluids (mL) *,** | 1870 (322) | 1318 (424) | 0.35 |
MAP + | 88 (2) | 87 (2) | 0.61 |
Pressor * | 45% | 45% | 0.97 |
HR + | 91 (2.4) | 89 (3.9) | 0.65 |
ΔHct * | −1% (3%) | −17% (5%) | 0.048 |
Change in Hematocrit (ΔHct) | Number of Studies | Active Extravasation |
---|---|---|
−40% to −60% | 5 | 60% |
−20% to −40% | 8 | 50% |
0% to −20% | 17 | 12% |
Any increase | 16 | 19% |
Variable | No CIN | CIN | p Value |
---|---|---|---|
n | 56 | 10 | |
Gender (% Male) | 64% | 70% | 0.73 |
Age (year) | 62 (2.4) | 65 (6.1) | 0.67 |
pRBC (units) | 1.4 (0.3) | 1.3 (0.5) | 0.89 |
Fluids (mL) | 2180 (350) | 1378 (608) | 0.36 |
MAP | 89 (1.8) | 85 (3.0) | 0.41 |
Pressor | 55% | 40% | 0.37 |
HR | 86 (1.9) | 93 (6.4) | 0.39 |
CHF | 18% | 40% | 0.11 |
DM | 13% | 10% | 0.47 |
Contrast (mL) | 141 (9) | 156 (19) | 0.46 |
Contrast type * | 29% | 40% | 0.47 |
Extravasation | 20% | 30% | 0.46 |
ΔHct | −5% | −20% | 0.07 |
GFR | >60 (5) | 57 (8) | 0.02 |
GFR | Number of Studies | CIN |
---|---|---|
<30 | 3 | 67% |
30–59 | 14 | 29% |
>60 | 49 | 8% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haber, Z.M.; Charles, H.W.; Erinjeri, J.P.; Deipolyi, A.R. Predictors of Active Extravasation and Complications after Conventional Angiography for Acute Intraabdominal Bleeding. J. Clin. Med. 2017, 6, 47. https://doi.org/10.3390/jcm6040047
Haber ZM, Charles HW, Erinjeri JP, Deipolyi AR. Predictors of Active Extravasation and Complications after Conventional Angiography for Acute Intraabdominal Bleeding. Journal of Clinical Medicine. 2017; 6(4):47. https://doi.org/10.3390/jcm6040047
Chicago/Turabian StyleHaber, Zachary M., Hearns W. Charles, Joseph P. Erinjeri, and Amy R. Deipolyi. 2017. "Predictors of Active Extravasation and Complications after Conventional Angiography for Acute Intraabdominal Bleeding" Journal of Clinical Medicine 6, no. 4: 47. https://doi.org/10.3390/jcm6040047
APA StyleHaber, Z. M., Charles, H. W., Erinjeri, J. P., & Deipolyi, A. R. (2017). Predictors of Active Extravasation and Complications after Conventional Angiography for Acute Intraabdominal Bleeding. Journal of Clinical Medicine, 6(4), 47. https://doi.org/10.3390/jcm6040047