Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy
Abstract
:1. Introduction
2. Using Myoblasts as a Cell Therapy
Year | N | Donor Cells | Injection | Immuno-Suppression | Results | Conclusions | Reference |
---|---|---|---|---|---|---|---|
1992 | 4 | Allogeneic immunocompatible myoblasts | Intramuscular: tibialis anterior, biceps brachii, and/or extensor carpi radialis longus | No | Variable response. Hybrid myofibers and modest strength increase in 3 of the 4 patient. Slow decay over time. | No signs of immune rejection | [19] |
1992 | 8 | Allogeneic immunocompatible myoblasts | Intramuscular: tibialis anterior | Cyclosporin | PCR evidence of hybrid fibers after 1 moth for 3 patients (1 patient tested still positive after 6 months). | Younger patients with less fibrosis presented best outcomes | [20] |
1993 | 5 | Allogenic myoblasts | Intramuscular: biceps brachii, left tibialis anterior | No | 0%–36% hybrid fibers after 1 month. Low dystrophin expression. Strong decrease in hybrid fibers at 6 months. No functional recovery. | Transplantation cannot be done without immuno-suppression | [21] |
1993 | 8 | Allogeneic myoblasts | Intramuscular: biceps brachii | Cyclosporin | Poor functional recovery and lack of donor-derived dystrophin. | Younger donor cells, regeneration induction and basal laminal fenestration could improve results | [22] |
1993 | 1 | Asymptomatic twin sibling myoblasts | Intramuscular: extensor carpi radialis, biceps | No | After 1 year, significant force gain (12%–31%) in wrist extension but not for elbow flexion. Small increase in dystrophin positive and type II fibers. | Small benefit may be due to a low level of spontaneous muscle regeneration | [23] |
1995 | 12 | Allogeneic myoblasts | Intramuscular: biceps brachii Injection repeated monthly over 6 months | With and without Cyclosporin | There was no significant change in muscle strength. % of hybrid fiber varied between 10.3 (1 patient), 1 (3) and 0 (8). | Patient age did not correlate with outcome | [11] |
1997 | 10 | Allogeneic immune-compatible myoblasts | Intramuscular: tibialis anterior | Cyclosporin | Myoblast survival after 1 month in 3 patients and after 6 month in 1 patient. No recovery symptoms or clinically significant dystrophin expression. | - | [24] |
2004 | 3 | Allogeneic myoblasts | Intramuscular: tibialis anterior | Tacrolimus | Hybrid fibers observed in all 3 patients (9%, 6%, 8% and 11%) | - | [25] |
2006 | 9 | Allogeneic immuno-compatible myoblasts | Intramuscular Tibalis anterior. High density injections | Tacrolimus | At 4 weeks, 3.5%–26% hybrid fibers | Dystrophin expression restricted to injection site and mostly in short inter-injection distances | [26] |
2007 | 1 | Allogeneic myoblasts | Intramuscular Thenar eminence, biceps brachii and gastrocnemius High density injections | Tacrolimus | At 18 months, 34.5% hybrid myofibers in gastrocnemius but almost 0% in biceps brachii. Increased strength only observed in thumb. | - | [27] |
On-going | - | Mesoan-gioblasts | Intra-arterial | Tacrolimus | Not yet | - | * |
3. Induced Pluripotent Stem Cells (iPSCs)-Derived Myogenic Progenitors (iPSC-MP)
Origin | Method | Myogenic Cells | Mice | Fiber Contribution | Satellite Cell | Ref. |
---|---|---|---|---|---|---|
miPSC | EB on high serum, culture on Matrigel+ SM/C2.6 Ab+ selection | Myoblast-like SM/C2.6+ |
|
| Yes | [36] |
hiPSC | EB + general differentiation +MyoD1 mRNA | Myoblast-like MyoD1+ | No | - | - | [45] |
miPSC | Inducible Pax7 expression on EB+ PDGFαR+FLK1− selection | Myoblast-like PDGFaR+FLK1− |
|
| NA * | [38] |
LGMD2D hiPSC | Inducible lentiviral MyoD1 on iPSC-derived MAB-like | MyoD1 expressing mesangioblast- like |
|
| NA | [46] |
hiPSC | EB+ITS medium + myogenic medium | Myoblast-like MyoD1+, Pax7+, Myf 5+ |
|
| Yes | [37] |
hiPSC | Inducible Pax7 expression on EB | Pax7+ myoblast-like |
| (1) Yes (2) Yes (2) Functional improvement | Yes | [39] |
DMD **-hiPSC | Mesenchyal-like lineage differentiation +adenoviral MyoD1 expression | Myoblast-like MyoD1+ |
| Yes | NA | [41] |
hiPSC | EB on Matrigel, GSK3 inh., forskolin, bFGF STEMdiff APEL medium | Myoblast-like MyoD1+, Pax7+, Myf 5+, Gata2+ |
| Yes | Yes | [44] |
hiPSC | ITS Medium+ GSK3 inh. +bFGF+AChR+ sorting | Myoblast-like Pax3+, Pax7+ | No | - | - | [43] |
hiPSC | Piggyback transposon inducible MyoD1 | Myoblast-like MyoD1+ |
| Low numbers of positive fibers | NA | [32] |
miPSC dKO | Inducible Pax3 expression on EB +PDGFαR+FLK1− selection +μUTR gene correction | Myoblast-like Pax3+ |
|
| Yes | [40] |
hiPSC BMD &, SMA, ALS | Free floating spherical culture +FGF2, EGF | Myoblast-like | - | - | - | [42] |
4. Disease Modeling
5. Future Challenges for Clinical Application
5.1. In Vivo Survival, Engraftment and Migration
5.2. Fibrosis
5.3. Creating the Perfect Niche
5.4. Genetic Correction vs. Immunocompatible Transplantation
5.5. Delivery Route
5.6. Safety
5.7. Clinical Grade Protocols
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ciciliot, S.; Schiaffino, S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr. Pharm. Des. 2010, 16, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Ceafalan, L.C.; Popescu, B.O.; Hinescu, M.E. Cellular players in skeletal muscle regeneration. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Karpati, G.; Molnar, M.J. Muscle fiber regeneration in human skeletal muscle diseases. In Skeletal Muscle Repair and Regeneration; Schiaffino, S., Partridge, T., Eds.; Springer: New York, NY, USA, 2008; pp. 199–216. [Google Scholar]
- Guettier-Sigrist, S.; Hugel, B.; Coupin, G.; Freyssinet, J.M.; Poindron, P.; Warter, J.M. Possible pathogenic role of muscle cell dysfunction in motor neuron death in spinal muscular atrophy. Muscle Nerve 2002, 25, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Pradat, P.F.; Barani, A.; Wanschitz, J.; Dubourg, O.; Lombes, A.; Bigot, A.; Mouly, V.; Bruneteau, G.; Salachas, F.; Lenglet, T.; et al. Abnormalities of satellite cells function in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2011, 12, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Rahimov, F.; Kunkel, L.M. The cell biology of disease: Cellular and molecular mechanisms underlying muscular dystrophy. J. Cell Biol. 2013, 201, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Croizat, B.; Lagrange, M.C.; Warter, J.M.; Poindron, P. Constitutive muscular abnormalities in culture in spinal muscular atrophy. Lancet 1995, 345, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, L.; Loeffler, J.P. Neuromuscular junction destruction during amyotrophic lateral sclerosis: Insights from transgenic models. Curr. Opin. Pharmacol. 2009, 9, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Quintero, A.J.; Wright, V.J.; Fu, F.H.; Huard, J. Stem cells for the treatment of skeletal muscle injury. Clin. Sports Med. 2009, 28, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cerletti, M.; Jurga, S.; Witczak, C.A.; Hirshman, M.F.; Shadrach, J.L.; Goodyear, L.J.; Wagers, A.J. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 2008, 134, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Kissel, J.T.; Amato, A.A.; King, W.; Signore, L.; Prior, T.W.; Sahenk, Z.; Benson, S.; McAndrew, P.E.; Rice, R.; et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N. Engl. J. Med. 1995, 333, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Quenneville, S.P.; Chapdelaine, P.; Rousseau, J.; Tremblay, J.P. Dystrophin expression in host muscle following transplantation of muscle precursor cells modified with the phiC31 integrase. Gene Ther. 2007, 14, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, V. Therapeutic efforts in Duchenne muscular dystrophy; the need for a common language between basic scientists and clinicians. Neuromuscul. Disord. 2004, 14, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Montarras, D.; Morgan, J.; Collins, C.; Relaix, F.; Zaffran, S.; Cumano, A.; Partridge, T.; Buckingham, M. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005, 309, 2064–2067. [Google Scholar] [CrossRef] [PubMed]
- White, J.D.; Grounds, M.D. Harnessing the therapeutic potential of myogenic stem cells. Cytotechnology 2003, 41, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Dellavalle, A.; Sampaolesi, M.; Tonlorenzi, R.; Tagliafico, E.; Sacchetti, B.; Perani, L.; Innocenzi, A.; Galvez, B.G.; Messina, G.; Morosetti, R.; et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 2007, 9, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaolesi, M.; Blot, S.; D’Antona, G.; Granger, N.; Tonlorenzi, R.; Innocenzi, A.; Mognol, P.; Thibaud, J.L.; Galvez, B.G.; Barthelemy, I.; et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006, 444, 574–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skuk, D.; Goulet, M.; Tremblay, J.P. Intramuscular transplantation of myogenic cells in primates: Importance of needle size, cell number, and injection volume. Cell Transplant. 2014, 23, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Huard, J.; Bouchard, J.P.; Roy, R.; Malouin, F.; Dansereau, G.; Labrecque, C.; Albert, N.; Richards, C.L.; Lemieux, B.; Tremblay, J.P. Human myoblast transplantation: Preliminary results of 4 cases. Muscle Nerve 1992, 15, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Gussoni, E.; Pavlath, G.K.; Lanctot, A.M.; Sharma, K.R.; Miller, R.G.; Steinman, L.; Blau, H.M. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992, 356, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.P.; Malouin, F.; Roy, R.; Huard, J.; Bouchard, J.P.; Satoh, A.; Richards, C.L. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 1993, 2, 99–112. [Google Scholar] [PubMed]
- Karpati, G.; Ajdukovic, D.; Arnold, D.; Gledhill, R.B.; Guttmann, R.; Holland, P.; Koch, P.A.; Shoubridge, E.; Spence, D.; Vanasse, M.; et al. Myoblast transfer in Duchenne muscular dystrophy. Ann. Neurol. 1993, 34, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.P.; Bouchard, J.P.; Malouin, F.; Theau, D.; Cottrell, F.; Collin, H.; Rouche, A.; Gilgenkrantz, S.; Abbadi, N.; Tremblay, M.; et al. Myoblast transplantation between monozygotic twin girl carriers of Duchenne muscular dystrophy. Neuromuscul. Disord. 1993, 3, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Sharma, K.R.; Pavlath, G.K.; Gussoni, E.; Mynhier, M.; Lanctot, A.M.; Greco, C.M.; Steinman, L.; Blau, H.M. Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study. Muscle Nerve 1997, 20, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Skuk, D.; Roy, B.; Goulet, M.; Chapdelaine, P.; Bouchard, J.P.; Roy, R.; Dugre, F.J.; Lachance, J.G.; Deschenes, L.; Helene, S.; et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol. Ther. 2004, 9, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Skuk, D.; Goulet, M.; Roy, B.; Chapdelaine, P.; Bouchard, J.P.; Roy, R.; Dugre, F.J.; Sylvain, M.; Lachance, J.G.; Deschenes, L.; et al. Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J. Neuropathol. Exp. Neurol. 2006, 65, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Skuk, D.; Goulet, M.; Roy, B.; Piette, V.; Cote, C.H.; Chapdelaine, P.; Hogrel, J.Y.; Paradis, M.; Bouchard, J.P.; Sylvain, M.; et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: Eighteen months follow-up. Neuromuscul. Disord. 2007, 17, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darabi, R.; Gehlbach, K.; Bachoo, R.M.; Kamath, S.; Osawa, M.; Kamm, K.E.; Kyba, M.; Perlingeiro, R.C. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med. 2008, 14, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Barberi, T.; Bradbury, M.; Dincer, Z.; Panagiotakos, G.; Socci, N.D.; Studer, L. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat. Med. 2007, 13, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Albini, S.; Coutinho, P.; Malecova, B.; Giordani, L.; Savchenko, A.; Forcales, S.V.; Puri, P.L. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep. 2013, 3, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Woltjen, K.; Miyake, K.; Hotta, A.; Ikeya, M.; Yamamoto, T.; Nishino, T.; Shoji, E.; Sehara-Fujisawa, A.; Manabe, Y.; et al. Efficient and reproducible myogenic differentiation from human iPS cells: Prospects for modeling Miyoshi Myopathy in vitro. PLoS One 2013, 8, e61540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, L.; Tang, W.; Wei, Y.; Bao, L.; Chen, J.; Chen, H.; He, L.; Lu, P.; Ren, J.; Wu, L.; et al. Highly efficient derivation of skeletal myotubes from human embryonic stem cells. Stem Cell Rev. 2012, 8, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Okawa, Y.; Inami, Y.; Nishio, N.; Isobe, K. Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 2008, 26, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Yoshimoto, M.; Umeda, K.; Iwasa, T.; Mizuno, Y.; Fukada, S.; Yamamoto, H.; Motohashi, N.; Miyagoe-Suzuki, Y.; Takeda, S.; et al. Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. Faseb. J. 2009, 23, 1907–1919. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Chang, H.; Umeda, K.; Niwa, A.; Iwasa, T.; Awaya, T.; Fukada, S.; Yamamoto, H.; Yamanaka, S.; Nakahata, T.; et al. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. Faseb. J. 2010, 24, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Awaya, T.; Kato, T.; Mizuno, Y.; Chang, H.; Niwa, A.; Umeda, K.; Nakahata, T.; Heike, T. Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One 2012, 7, e51638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darabi, R.; Pan, W.; Bosnakovski, D.; Baik, J.; Kyba, M.; Perlingeiro, R.C. Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev. 2011, 7, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Darabi, R.; Arpke, R.W.; Irion, S.; Dimos, J.T.; Grskovic, M.; Kyba, M.; Perlingeiro, R.C. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 2012, 10, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Filareto, A.; Parker, S.; Darabi, R.; Borges, L.; Iacovino, M.; Schaaf, T.; Chamberlain, J.S.; Ervasti, J.M.; McIvor, R.S.; Kyba, M.; et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat. Commun. 2013, 4, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Goudenege, S.; Lebel, C.; Huot, N.B.; Dufour, C.; Fujii, I.; Gekas, J.; Rousseau, J.; Tremblay, J.P. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol. Ther. 2012, 20, 2153–2167. [Google Scholar] [CrossRef] [PubMed]
- Hosoyama, T.; McGivern, J.V.; van Dyke, J.M.; Ebert, A.D.; Suzuki, M. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl. Med. 2014, 3, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Borchin, B.; Chen, J.; Barberi, T. Derivation and FACS-Mediated Purification of PAX3+/PAX7+ Skeletal Muscle Precursors from Human Pluripotent Stem Cells. Stem Cell Rep. 2013, 1, 620–631. [Google Scholar] [CrossRef]
- Xu, C.; Tabebordbar, M.; Iovino, S.; Ciarlo, C.; Liu, J.; Castilgioni, A.; Price, E.; Liu, M.; Barton, E.R.; Kahn, C.R.; et al. Azebrafish culture system defines factors that promote vertebrate myogenesis across species. Cell 2013, 155, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010, 7, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, F.S.; Gerli, M.F.; Perani, L.; Benedetti, S.; Ungaro, F.; Cassano, M.; Antonini, S.; Tagliafico, E.; Artusi, V.; Longa, E.; et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef]
- Yasuno, T.; Osafune, K.; Sakurai, H.; Asaka, I.; Tanaka, A.; Yamaguchi, S.; Yamada, K.; Hitomi, H.; Arai, S.; Kurose, Y.; et al. Functional analysis of iPSC-derived myocytes from a patient with carnitine palmitoyltransferase II deficiency. Biochem. Biophys. Res. Commun. 2014, 448, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Maffioletti, S.M.; Noviello, M.; English, K.; Tedesco, F.S. Stem cell transplantation for muscular dystrophy: The challenge of immune response. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Perniconi, B.; Coletti, D. Skeletal muscle tissue engineering: Best bet or black beast? Frotiers Physiol. 2014, 5. [Google Scholar] [CrossRef]
- Kinnaird, T.; Stabile, E.; Burnett, M.S.; Shou, M.; Lee, C.W.; Barr, S.; Fuchs, S.; Epstein, S.E. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004, 109, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.A.; Pozzobon, M.; de Coppi, P. Advances in musculoskeletal tissue engineering: Moving towards therapy. Organogenesis 2010, 6, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Citadella Vigodarzere, G.; Mantero, S. Skeletal muscle tissue engineering: Strategies for volumetric constructs. Front. Physiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H.; Suzuki, K.; Qu, J.; Sancho-Martinez, I.; Yi, F.; Li, M.; Kumar, S.; Nivet, E.; Kim, J.; Soligalla, R.D.; et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 2011, 8, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.J.; Peacock, B.; Chaudhry, A.N.; Bradley, J.A.; Bolton, D.M. Generating an iPSCs bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 2012, 11, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.; Li, Z.; Fung, H.L.; Young, J.E.; Agarwal, S.; Antosiewicz-Bourget, J.; Canto, I.; Giorgetti, A.; Israel, M.A.; Kiskinis, E.; et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011, 471, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Onder, T.T.; Kara, N.; Cherry, A.; Sinha, A.U.; Zhu, C.; Bernt, K.M.; Cahan, P.; Marcarci, B.O.; Unternaehrer, J.; Gupta, P.B.; et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012, 483, 598–602. [Google Scholar] [CrossRef] [PubMed]
- McLenachan, S.; Menchon, C.; Raya, A.; Consiglio, A.; Edel, M.J. Cyclin A1 is essential for setting the pluripotent state and reducing tumorigenicity of induced pluripotent stem cells. Stem Cells Dev. 2012, 21, 2891–2899. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Takizawa, N.; Narita, M.; Ichisaka, T.; Yamanaka, S. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl. Acad. Sci. USA 2010, 107, 14152–14157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roca, I.; Requena, J.; Edel, M.J.; Alvarez-Palomo, A.B. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. J. Clin. Med. 2015, 4, 243-259. https://doi.org/10.3390/jcm4020243
Roca I, Requena J, Edel MJ, Alvarez-Palomo AB. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. Journal of Clinical Medicine. 2015; 4(2):243-259. https://doi.org/10.3390/jcm4020243
Chicago/Turabian StyleRoca, Isart, Jordi Requena, Michael J. Edel, and Ana Belén Alvarez-Palomo. 2015. "Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy" Journal of Clinical Medicine 4, no. 2: 243-259. https://doi.org/10.3390/jcm4020243
APA StyleRoca, I., Requena, J., Edel, M. J., & Alvarez-Palomo, A. B. (2015). Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. Journal of Clinical Medicine, 4(2), 243-259. https://doi.org/10.3390/jcm4020243