Cultivated Oral Mucosal Epithelial Transplantation for Limbal Stem Cell Deficiency: A Scoping Review of Indications, Platforms, Outcomes and Safety
Abstract
1. Introduction
2. Methods
3. Results
3.1. Aetiology
3.2. Preoperative Interventions
3.3. Surgical Approaches and Platforms
3.4. Postoperative Regimen and Follow-Up
3.5. Anatomical Outcomes
3.6. Platform Effects
3.7. Time to Epithelialisation
3.8. Visual Outcomes
3.9. Comparative Cohorts (Positioning COMET)
3.10. Fornix Reconstruction in Cicatrising Disease
3.11. Safety
3.12. Predictors of Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genna, V.G.; Maurizi, E.; Rama, P.; Pellegrini, G. Biology and medicine on ocular surface restoration: Advancements and limits of limbal stem cell deficiency treatments. Ocul. Surf. 2025, 35, 57–67. [Google Scholar] [CrossRef]
- Kengpunpanich, S.; Chirapapaisan, C.; Ngowyutagon, P.; Chotikavanich, S.; Sikarinkul, R.; Taetrongchit, N.; Setthawong, S.; Prabhasawat, P. Comparative analysis of long-term results of three epithelial cell transplantation procedures for treating limbal stem cell deficiency. Ocul. Surf. 2024, 32, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.X.; Borderie, V.; Chan, C.C.; Dana, R.; Figueiredo, F.C.; Gomes, J.A.P.; Pellegrini, G.; Shimmura, S.; Kruse, F.E.; The International Limbal Stem Cell Deficiency Working Group. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea 2019, 38, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.X.; Kruse, F.; Gomes, J.A.P.; Chan, C.C.; Daya, S.; Dana, R.; Figueiredo, F.; Kinoshita, S.; Rama, P.; Sangwan, V.; et al. Global Consensus on the Management of Limbal Stem Cell Deficiency. Cornea 2020, 39, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.; Ardigò, D.; Milazzo, G.; Iotti, G.; Guatelli, P.; Pelosi, D.; De Luca, M. Navigating Market Authorization: The Path Holoclar Took to Become the First Stem Cell Product Approved in the European Union. Stem Cells Transl. Med. 2018, 7, 146–154. [Google Scholar] [CrossRef]
- Shanbhag, S.S.; Patel, C.N.; Goyal, R.; Donthineni, P.R.; Singh, V.; Basu, S. Simple limbal epithelial transplantation (SLET): Review of indications, surgical technique, mechanism, outcomes, limitations, and impact. Indian J. Ophthalmol. 2019, 67, 1265–1277. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Eslani, M.; Kurji, K.H.; Wright, E.; Sarnicola, E.; Govil, A.; Holland, E.J. Long-term Outcomes of Living-Related Conjunctival Limbal Allograft Compared with Keratolimbal Allograft in Patients with Limbal Stem Cell Deficiency. Cornea 2020, 39, 980–985. [Google Scholar] [CrossRef]
- Nakamura, T.; Inatomi, T.; Sotozono, C.; Amemiya, T.; Kanamura, N.; Kinoshita, S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br. J. Ophthalmol. 2004, 88, 1280–1284. [Google Scholar] [CrossRef]
- Satake, Y.; Higa, K.; Tsubota, K.; Shimazaki, J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology 2011, 118, 1524–1530. [Google Scholar] [CrossRef]
- Komai, S.; Inatomi, T.; Nakamura, T.; Ueta, M.; Horiguchi, G.; Teramukai, S.; Kimura, Y.; Kagimura, T.; Fukushima, M.; Kinoshita, S.; et al. Long-Term outcome of cultivated oral mucosal epithelial transplantation for fornix reconstruction in chronic cicatrising diseases. Br. J. Ophthalmol. 2022, 106, 1355–1362. [Google Scholar] [CrossRef]
- Toshida, H.; Kasahara, T.; Kiriyama, M.; Iwasaki, Y.; Sugita, J.; Ichikawa, K.; Ohta, T.; Miyahara, K. Early Clinical Outcomes of the First Commercialized Human Autologous Ex Vivo Cultivated Oral Mucosal Epithelial Cell Transplantation for Limbal Stem Cell Deficiency: Two Case Reports and Literature Review. Int. J. Mol. Sci. 2023, 24, 8926. [Google Scholar] [CrossRef]
- Aketa, N.; Kasai, M.; Noda, S.; Asano, J.; Kunieda, A.; Kawanishi, S.; Maruyama, Y.; Honda, F. Insights into the clinical development of regenerative medical products through a comparison of three cell-based products recently approved for limbal stem cell deficiency. Ocul. Surf. 2023, 29, 220–225. [Google Scholar] [CrossRef]
- Inamochi, A.; Tomioka, A.; Kitamoto, K.; Miyai, T.; Usui, T.; Aihara, M.; Yamagami, S. Simple oral mucosal epithelial transplantation in a rabbit model. Sci. Rep. 2019, 9, 18088. [Google Scholar] [CrossRef]
- Sotozono, C.; Inatomi, T.; Nakamura, T.; Koizumi, N.; Yokoi, N.; Ueta, M.; Matsuyama, K.; Kaneda, H.; Fukushima, M.; Kinoshita, S. Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmol. 2014, 92, e447–e453. [Google Scholar] [CrossRef] [PubMed]
- Priya, C.G.; Arpitha, P.; Vaishali, S.; Prajna, N.V.; Usha, K.; Sheetal, K.; Muthukkaruppan, V. Adult human buccal epithelial stem cells: Identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye 2011, 25, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, J.; Satake, Y.; Higa, K.; Yamaguchi, T.; Noma, H.; Tsubota, K. Long-term outcomes of cultivated cell sheet transplantation for treating total limbal stem cell deficiency. Ocul. Surf. 2020, 18, 663–671. [Google Scholar] [CrossRef]
- Elalfy, M.; Elsawah, K.; Maqsood, S.; Jordan, N.; Hassan, M.; Zaki, A.; Gatzioufas, Z.; Hamada, S.; Lake, D. Allogenic Cultured Limbal Epithelial Transplantation and Cultivated Oral Mucosal Epithelial Transplantation in Limbal Stem Cells Deficiency: A Comparative Study. Ophthalmol. Ther. 2025, 14, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qi, X.; Dong, Y.; Cheng, J.; Zhai, H.; Zhou, Q.; Xie, L. Comparison of the efficacy of different cell sources for transplantation in total limbal stem cell deficiency. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1253–1263. [Google Scholar] [CrossRef]
- Nakamura, T.; Inatomi, T.; Cooper, L.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S. Phenotypic Investigation of Human Eyes with Transplanted Autologous Cultivated Oral Mucosal Epithelial Sheets for Severe Ocular Surface Diseases. Ophthalmology 2007, 114, 1080–1088. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Qiu, W.Y.; Xu, Y.S.; Yao, Y.F. Clinical efficacy of a new surgical technique of oral mucosal epithelial transplantation for severe ocular surface disorders. BMC Ophthalmol. 2023, 23, 145. [Google Scholar] [CrossRef]
- Venugopal, R.; Nagpal, R.; Mohanty, S.; Sen, S.; Kashyap, S.; Agarwal, T.; Maharana, P.K.; Vajpayee, R.B.; Sharma, N. Outcomes of Cultivated Oral Mucosal Epithelial Transplantation in Eyes with Chronic Stevens-Johnson Syndrome Sequelae. Am. J. Ophthalmol. 2021, 222, 82–91. [Google Scholar] [CrossRef]
- Dobrowolski, D.; Orzechowska-Wylegala, B.; Wowra, B.; Wroblewska-Czajka, E.; Grolik, M.; Szczubialka, K.; Nowakowska, M.; Puzzolo, D.; Wylegala, E.A.; Micali, A.; et al. Cultivated Oral Mucosa Epithelium in Ocular Surface Reconstruction in Aniridia Patients. BioMed Res. Int. 2015, 2015, 281870. [Google Scholar] [CrossRef]
- Prabhasawat, P.; Ekpo, P.; Uiprasertkul, M.; Chotikavanich, S.; Tesavibul, N.; Pornpanich, K.; Luemsamran, P. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016, 17, 491–503. [Google Scholar] [CrossRef]
- Hirayama, M.; Satake, Y.; Higa, K.; Yamaguchi, T.; Shimazaki, J. Transplantation of cultivated oral mucosal epithelium prepared in fibrin-coated culture dishes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1602–1609. [Google Scholar] [CrossRef]
- Aziza, Y.; Imai, K.; Itoi, M.; Yoshioka, H.; Komai, S.; Kitazawa, K.; Sitompul, R.; Ueta, M.; Fukuoka, H.; Inatomi, T.; et al. Strategic combination of cultivated oral mucosal epithelial transplantation and postoperative limbal-rigid contact lens-wear for end-stage ocular surface disease: A retrospective cohort study. Br. J. Ophthalmol. 2023, 108, 1177–1183. [Google Scholar] [CrossRef]
- Booranapong, W.; Kosrirukvongs, P.; Duangsa-ard, S.; Kasetsinsombat, K.; Sa-ngiamsuntorn, K.; Wongkajornsilp, A. Transplantation of autologous cultivated oral mucosal epithelial sheets for limbal stem cell deficiency at Siriraj Hospital: A case series. J. Med. Case Rep. 2022, 16, 298. [Google Scholar] [CrossRef]
- Nakamura, T.; Takeda, K.; Inatomi, T.; Sotozono, C.; Kinoshita, S. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br. J. Ophthalmol. 2011, 95, 942–946. [Google Scholar] [CrossRef]
- Sotozono, C.; Inatomi, T.; Nakamura, T.; Koizumi, N.; Yokoi, N.; Ueta, M.; Matsuyama, K.; Miyakoda, K.; Kaneda, H.; Fukushima, M.; et al. Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology 2013, 120, 193–200. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.J.; Ryu, J.S.; Kim, Y.H.; Jeon, S.; Oh, J.Y.; Choung, H.K.; Khwarg, S.I.; Wee, W.R.; Kim, M.K. Prospective Clinical Trial of Corneal Reconstruction with Biomaterial-Free Cultured Oral Mucosal Epithelial Cell Sheets [Internet]. 2017. Available online: https://journals.lww.com/corneajrnl/abstract/2018/01000/prospective_clinical_trial_of_corneal.14.aspx (accessed on 2 December 2025).
- Ang, L.P.; Nakamura, T.; Inatomi, T.; Sotozono, C.; Koizumi, N.; Yokoi, N.; Kinoshita, S. Autologous Serum-Derived Cultivated Oral Epithelial Transplants for Severe Ocular Surface Disease [Internet]. Available online: www.archophthalmol.com (accessed on 2 December 2025).
- Ma, D.H.K.; Kuo, M.T.; Tsai, Y.J.; Chen, H.C.J.; Chen, X.L.; Wang, S.F.; Li, L.; Hsiao, C.-H.; Lin, K.-K. Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye 2009, 23, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Burillon, C.; Huot, L.; Justin, V.; Nataf, S.; Chapuis, F.; Decullier, E.; Damour, O. Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) Transplantation for the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Gopakumar, V.; Agarwal, S.; Srinivasan, B.; Krishnakumar, S.; Maheswari Krishnan, U.; Iyer, G. Clinical Outcome of Autologous Cultivated Oral Mucosal Epithelial Transplantation in Ocular Surface Reconstruction [Internet]. 2019. Available online: https://journals.lww.com/corneajrnl/abstract/2019/10000/clinical_outcome_of_autologous_cultivated_oral.12.aspx (accessed on 2 December 2025).
- Inatomi, T.; Nakamura, T.; Koizumi, N.; Sotozono, C.; Yokoi, N.; Kinoshita, S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am. J. Ophthalmol. 2006, 141, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.V.; Jackson, C.J.; Utheim, T.P.; Jirsova, K. Ex vivo cultivated oral mucosal epithelial cell transplantation for limbal stem cell deficiency: A review. Stem Cell Res. Ther. 2020, 11, 301. [Google Scholar] [CrossRef] [PubMed]
| Study (Year) | Country/Setting | Design | Eyes (pts) |
|---|---|---|---|
| Ang et al., 2006 [30] | Singapore (tertiary) | Prospective interventional case series | 10 (10) |
| Dobrowolski et al., 2015 [22] | Poland (single-centre) | Retrospective case series | 17 (13) |
| Aziza et al., 2024 [25] | Japan (multicentre) | Retrospective, adjunct therapy after COMET (limbal-rigid CL) | 23 (18) |
| Booranapong et al., 2022 [26] | Thailand | Small clinical series (methods + 6 pts longitudinal) | 6 (6) |
| Burillon et al., 2012 [32] | France (multicentre) | Prospective, Gehan’s two-stage | 26 (25) |
| Gopakumar et al., 2019 [33] | Japan | Mixed cohorts: acute-stage LSCD (n = 6) and fornix reconstruction in cicatrizing disease (n ≈ 19) | 25 (24) |
| Elalfy et al., 2025 [17] | UK tertiary corneoplastic unit | Comparative real-world cohort: COMET vs. allogeneic CLET (ACLET) | COMET 41 vs. ACLET 69 |
| Hirayama et al., 2012 [24] | Japan (Kyoto) | Case–control comparison: substrate-free (fibrin) vs. AM-based COMET | 32 (32) |
| Inatomi et al., 2006 [34] | Japan (Kyoto) | Prospective case series | 15 (12) |
| Kengpunpanich et al., 2024 [2] | Thailand (Siriraj) | Retrospective comparative (CLET vs. SLET vs. COMET) | 103 eyes (94 pts) overall |
| Kim et al., 2018 [29] | Korea (SNUH) | Prospective controlled clinical trial | 8 |
| Komai et al., 2022 [10] | Japan (Kyoto) | Retrospective cohort (fornix reconstruction) | 16 (15) |
| Ma et al., 2009 [31] | Taiwan | Prospective feasibility series | 5 (5) |
| Nakamura et al., 2004 [8] | Japan (Kyoto) | Early prospective case series | 6 |
| Nakamura et al., 2011 [27] | Japan (Kyoto) | Long-term cohort | 19 (17) |
| Nakamura et al., 2007 [19] | Japan (Kyoto) | Mechanistic (removed graft histology) | 6 eyes (5 pts) |
| Prabhasawat et al., 2016 [23] | Thailand (Siriraj) | Prospective non-comparative series | 20 (18) |
| Priya et al., 2011 [15] | India (Aravind) | Translational + small clinical | 10 (10) |
| Satake et al., 2011 [9] | Japan (Tokyo Dental College) | Retrospective interventional | 40 (36) |
| Shimazaki et al., 2020 [16] | Japan (multicentre) | Retrospective cohort (CCST) | 162 eyes (246 surgeries) total CCST; COMET n = 143 within cohort (analysed per eye) |
| Sotozono et al., 2014 [14] | Japan (Kyoto) | Retrospective series (PED in severe OSD) | 10 (9) |
| Sotozono et al., 2013 [28] | Japan (Kyoto) | Retrospective outcomes | 46 (40) |
| Venugopal et al., 2021 [21] | India (Tertiary SJS service) | Prospective interventional | 45 (41) |
| Zhu et al., 2023 ** [20] | China (Sir Run Run Shaw Hospital, Zhejiang Univ.) | Retrospective series | 49 eyes (48 pts) |
| Wang et al., 2019 [18] | China (PLA General Hospital; Shandong Eye Institute) | Retrospective comparative cohort (ACLET vs. COMET) | 76 eyes (73 pts)—ACLET 42 eyes (41 pts); COMET 34 eyes (32 pts) |
| Study (Year) | LSCD Aetiology |
|---|---|
| Ang et al., 2006 [30] | SJS/TEN × 7, thermal injury × 1, chemical injury × 1, OCP × 1 |
| Dobrowolski et al., 2015 [22] | 17 congenital aniridia with total/subtotal LSCD |
| Aziza et al., 2024 [25] | SJS/TEN × 21, OCP × 2 |
| Booranapong et al., 2022 [26] | SJS/TEN × 3, chemical burns × 3 |
| Burillon et al., 2012 [32] | Corneal burn × 9, neuroparalytic keratitis × 2, rosacea keratitis × 3, Lyell syndrome × 4, severe trachoma × 1, contact lens hypoxia × 1, congenital aniridia × 1, cystinosis × 1, severe Groenouw dystrophy × 1, hepatitis C × 1, contact lens hypoxia + congenital aniridia × 2 |
| Sotozono et al., 2014 [14] | SJS/TEN × 3, thermal injury × 3, chemical injury × 2, OCP × 2 |
| Gopakumar et al., 2019 [33] | SJS/TEN × 11, chemical injury × 12, OCP × 1 |
| Elalfy et al., 2025 [17] | Aniridia × 47, SJS × 9, thermal injury × 4, chemical injury × 15, OCP × 1, rosacea × 9, other × 12 |
| Hirayama et al., 2012 [24] | Chemical 6, pseudo-OCP 6, SJS 2, OCP 2 per group |
| Inatomi et al., 2006 [34] | SJS/TEN × 7, chemical injury × 5, thermal injury × 1, pseudo-OCP × 1, idiopathic × 1 |
| Kengpunpanich et al., 2024 [2] | Unspecified burn × 44, SJS/TEN × 27, other × 32, allergic conjunctivitis × 5, PUK × 7, multiple surgeries × 4, MGD × 3, MMC toxicity × 4, aniridia × 3, pterygium × 2, ocular trauma × 1, idiopathic × 1 |
| Kim et al., 2018 [29] | SJS/TEN × 6, chemical injury × 1, OCP × 1 |
| Komai et al., 2022 [10] | OCP × 5, thermal × 2, chemical × 1, SJS × 1, pterygium × 2, GVHD × 1, Trachoma × 1, POCP × 1, Idiopathic × 1 |
| Ma et al., 2009 [31] | Chemical burn × 3, thermal burn × 2 |
| Nakamura et al., 2004 [8] | SJS/TEN × 3, chemical burns × 3 |
| Nakamura et al., 2011 [27] | SJS/TEN × 11, chemical or thermal injury × 1, OCP × 4, squamous cell carcinoma × 2, GVHD × 1 |
| Nakamura et al., 2007 [19] | SJS/TEN × 3, chemical injury × 3 |
| Prabhasawat et al., 2016 [23] | SJS/TEN × 10, chemical burn × 7, multiple eye surgery × 1, advanced pterygium × 1, ocular trauma × 1 |
| Priya et al., 2011 [15] | SJS/TEN × 1, chemical injury × 9 |
| Satake et al., 2011 [9] | SJS/TEN × 12, chemical or thermal injury × 11, OCP × 9, pOCP × 7, gelatinous drop-like dystrophy × 1 |
| Shimazaki et al., 2020 [16] | SJS/TEN × 41; burns 52; OCP × 32; others × 18 |
| Sotozono et al., 2014 [14] | SJS/TEN × 3, thermal injury × 3, chemical injury × 2, OCP × 2 |
| Sotozono et al., 2013 [28] | SJS/TEN × 21, OCP × 10, chemical or thermal injury × 7, idiopathic × 3, radiation keratopathy × 1, GVHD × 1, congenital aniridia × 1, Salzmann’s corneal degeneration × 1, drug toxicity × 1 |
| Venugopal et al., 2021 [21] | Chronic SJS/TEN sequelae × 45 |
| Zhu et al., 2023 ** [20] | Chemical 30, thermal 16, explosive 1, SJS/TEN 1, multiple pterygia 1 |
| Wang et al., 2019 [18] | Chemical injury × 16, thermal injury × 18 |
| Study | Arms (Eyes) | Follow-Up | Success Measure | Key Result |
|---|---|---|---|---|
| Wang 2019 [18] | ACLET 42 vs. COMET 34 | ACLET 23.3 9.9 mo; COMET 16.1 ± 5.8 mo | KM stable ocular surface | 71.4% ACLET vs. 52.9% COMET (p = 0.043); PED more frequent after COMET; eyelid disease increased failure |
| Kengpunpanich 2024 [2] | CLET vs. SLET vs. COMET (103 total) | Median 75 mo | Surgical success + KM | SLET 77.8% (7-y 72.2%); COMET 57.8% (7-y 53.2%); CLET 45.5% (7-y 50.0%); SJS/TEN & Schirmer <5 mm → failure |
| Elalfy 2025 [17] | ACLET 69 vs. COMET 41 | ACLET 18 mo; COMET 5 mo | Stable surface at last visit | 81.7% ACLET vs. 60.7% COMET; ACLET had significant VA gain |
| Study | Cohort Context | Predictor | Analysis | Key Findings |
|---|---|---|---|---|
| Satake 2011 [9] | Total LSCD AM-based | Pre-op epithelial defect--> early failure | Observed association | Early window is critical |
| Hirayama 2012 [24] | Substrate-free vs. AM | Substrate-free: increased survival + better BCVA | KM; p = 0.046 | Technique effect |
| Wang 2019 [18] | ACLET vs. COMET | Eyelid abnormalities: increased failure’ PED more frequent after COMET | KM; group comparison | PED dominant failure mode |
| Kengpunpanich 2024 [2] | 3 arm cohort | SJS/TEN, Schirmer < 5 mm: failure | Risk model | Cicatrizing dry eye high risk |
| Komai 2022 [10] | Fornix reconstruction | Recurrence by 24 week: poor long-term survival | KM stratified | Early control predicts outcomes |
| Kim 2018 [29] | Biomaterial-free | 4 quadrant symblepharon: failure | Series observation | Adnexal burden matters |
| Shimazaki 2020 [16] | CCST programme | Pre-op Epi defect: failure | Programme analysis | Concordant with the COMET literature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Papadopoulos, K.; Elalfy, M.; Naveed, H.; Zormpas, S.; Matsou, A. Cultivated Oral Mucosal Epithelial Transplantation for Limbal Stem Cell Deficiency: A Scoping Review of Indications, Platforms, Outcomes and Safety. J. Clin. Med. 2026, 15, 1134. https://doi.org/10.3390/jcm15031134
Papadopoulos K, Elalfy M, Naveed H, Zormpas S, Matsou A. Cultivated Oral Mucosal Epithelial Transplantation for Limbal Stem Cell Deficiency: A Scoping Review of Indications, Platforms, Outcomes and Safety. Journal of Clinical Medicine. 2026; 15(3):1134. https://doi.org/10.3390/jcm15031134
Chicago/Turabian StylePapadopoulos, Konstantinos, Mohamed Elalfy, Hasan Naveed, Sokratis Zormpas, and Artemis Matsou. 2026. "Cultivated Oral Mucosal Epithelial Transplantation for Limbal Stem Cell Deficiency: A Scoping Review of Indications, Platforms, Outcomes and Safety" Journal of Clinical Medicine 15, no. 3: 1134. https://doi.org/10.3390/jcm15031134
APA StylePapadopoulos, K., Elalfy, M., Naveed, H., Zormpas, S., & Matsou, A. (2026). Cultivated Oral Mucosal Epithelial Transplantation for Limbal Stem Cell Deficiency: A Scoping Review of Indications, Platforms, Outcomes and Safety. Journal of Clinical Medicine, 15(3), 1134. https://doi.org/10.3390/jcm15031134

