Renal Shear Wave Elastography for Differentiating Vasculitic and Non-Vasculitic Acute Kidney Injury †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Definitions
2.3. Shear Wave Elastography Protocol
2.4. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Baseline Patient Characteristics and Between-Group Comparisons
3.3. Correlation and Diagnostic Performance of Renal Cortical Stiffness
3.4. Comparison of Clinical and Elastographic Parameters by Long-Term Renal Outcome in IgA Vasculitis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AKI | Acute Kidney Injury |
| 2D-SWE | Two-Dimensional Shear-Wave Elastography |
| IgAVN | Immunoglobulin A Vasculitis Nephritis |
| kPa | Kilopascal |
| ANA | Antinuclear Antibody |
| ENA | Extractable Nuclear Antigen |
| PR-3 ANCA | Anti-proteinase 3 Antibody |
| MPO-ANCA | Anti-myeloperoxidase Antibody |
| V-AKI | Vasculitic Acute Kidney Injury |
| NV-AKI | Non-vasculitic Acute Kidney Injury |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| eGFR | Estimated Glomerular Filtration Rate |
| ROI | Region of Interest |
| ROC | Receiver Operating Characteristic |
| HUS | Hemolytic Uremic Syndrome |
| TIN | Tubulointerstitial Nephritis |
| SD | Standard Deviation |
| BMI | Body Mass Index |
| IgA | Immunoglobulin A |
References
- National Institute for Health and Care Excellence (NICE). Acute Kidney Injury: Prevention, Detection and Management; NICE Clinical Guideline No. 148; NICE: London, UK, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK552160/ (accessed on 27 January 2026).
- Hull, K.L.; Adenwalla, S.F.; Topham, P.; Graham-Brown, M.P. Indications and considerations for kidney biopsy: An overview of clinical considerations for the non-specialist. Clin. Med. 2022, 22, 34–40. [Google Scholar] [CrossRef]
- Correas, J.M.; Anglicheau, D.; Gennisson, J.L.; Tanter, M. Élastographie rénale [Renal elastography]. Nephrol. Ther. 2016, 12, S25–S34. [Google Scholar] [CrossRef]
- Cè, M.; Felisaz, P.F.; Alì, M.; Re Sartò, G.V.; Cellina, M. Ultrasound elastography in chronic kidney disease: A systematic review and meta-analysis. J. Med. Ultrason. 2023, 50, 381–415. [Google Scholar] [CrossRef]
- McDonald, R.; Watchorn, J.; Hutchings, S. New ultrasound techniques for acute kidney injury diagnostics. Curr. Opin. Crit. Care 2024, 30, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.C.; Falk, R.J. The pathology of vasculitis involving the kidney. Am. J. Kidney Dis. 1994, 24, 130–141. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Sagreiya, H.; Akhbardeh, A.; Li, D.; Sigrist, R.; Chung, B.I.; Sonn, G.A.; Tian, L.; Rubin, D.L.; Willmann, J.K. Point shear wave elastography using machine learning to differentiate renal cell carcinoma and angiomyolipoma. Ultrasound Med. Biol. 2019, 45, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Filipov, T.; Teutsch, B.; Szabó, A.; Forintos, A.; Ács, J.; Váradi, A.; Hegyi, P.; Szarvas, T.; Ács, N.; Nyirády, P.; et al. Role of ultrasound-based shear wave elastography in kidney transplanted patients: A systematic review and meta-analysis. J. Nephrol. 2024, 37, 1509–1522. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Yoğurtçuoğlu, B.; Damar, Ç. Renal elastography measurements in children with acute glomerulonephritis. Ultrasonography 2021, 40, 575–583. [Google Scholar] [CrossRef]
- Ophir, J.; Céspedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef]
- Emelianov, S.Y.; Lubinski, M.A.; Weitzel, W.F.; Wiggins, R.C.; Skovoroda, A.R.; O’Donnell, M. Elasticity imaging for early detection of renal pathology. Ultrasound Med. Biol. 1995, 21, 871–883. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Leong, S.S.; Jalalonmuhali, M.; Md Shah, M.N.; Ng, K.H.; Vijayananthan, A.; Hisham, R.; Wong, J.H.D. Ultrasound shear wave elastography for the evaluation of renal pathological changes in adult patients. Br. J. Radiol. 2023, 96, 20220288. [Google Scholar] [CrossRef]
- Xu, Q.; Qiang, B.; Pan, Y.; Li, J.; Zha, L.; Lu, W.; Wang, J.; Li, J. Alteration in shear wave elastography is associated with acute kidney injury: A prospective observational pilot study. Shock 2023, 59, 375–384. [Google Scholar] [CrossRef]
- Qiang, B.; Xu, Q.; Pan, Y.; Wang, J.; Shen, C.; Peng, X.; Shen, W.; Zhang, Y.; Zhu, X. Shear wave elastography: A noninvasive approach for assessing acute kidney injury in critically ill patients. PLoS ONE 2024, 19, e0296411. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Chen, L.; Su, T. Contrast-enhanced ultrasound and elastography predict histopathology and recovery in acute kidney injury. Ren. Fail. 2025, 47, 2542525. [Google Scholar] [CrossRef] [PubMed]
- Gaut, J.P.; Liapis, H. Acute kidney injury pathology and pathophysiology: A retrospective review. Clin. Kidney J. 2021, 14, 526–536. [Google Scholar] [CrossRef]
- Pillebout, E. IgA vasculitis and IgA nephropathy: Two sides of the same coin? Semin. Nephrol. 2024, 44, 151571. [Google Scholar] [CrossRef]
- Binda, V.; Moroni, G.; Messa, P. ANCA-associated vasculitis with renal involvement. J. Nephrol. 2018, 31, 197–208. [Google Scholar] [CrossRef] [PubMed]
- He, W.Y.; Jin, Y.J.; Wang, W.P.; Li, C.L.; Ji, Z.B.; Yang, C. Tissue elasticity quantification by acoustic radiation force impulse for the assessment of renal allograft function. Ultrasound Med. Biol. 2014, 40, 322–329. [Google Scholar] [CrossRef]
- Stock, K.F.; Klein, B.S.; Cong, M.T.; Regenbogen, C.; Kemmner, S.; Büttner, M.; Wagenpfeil, S.; Matevossian, E.; Renders, L.; Heemann, U.; et al. ARFI-based tissue elasticity quantification and kidney graft dysfunction: First clinical experiences. Clin. Hemorheol. Microcirc. 2011, 49, 527–535. [Google Scholar] [CrossRef]
- Yang, C.; Jin, Y.; Wu, S.; Li, L.; Hu, M.; Xu, M.; Rong, R.; Zhu, T.; He, W. Prediction of renal allograft acute rejection using a novel non-invasive model based on acoustic radiation force impulse. Ultrasound Med. Biol. 2016, 42, 2167–2179. [Google Scholar] [CrossRef]
- Shi, L.Q.; Sun, J.; Yuan, L.; Wang, X.W.; Li, W.; Cheng, C.Y.; Guo, W.D.; Hong, Y. Diagnostic performance of renal cortical elasticity by supersonic shear wave imaging in pediatric glomerular disease. Eur. J. Radiol. 2023, 168, 111113. [Google Scholar] [CrossRef]
- Bob, F.; Grosu, I.; Sporea, I.; Bota, S.; Popescu, A.; Sirli, R.; Petrica, L.; Schiller, A. Correlation between kidney shear wave velocity measured with VTQ and histological parameters in patients with chronic glomerulonephritis: A pilot study. Med. Ultrason. 2018, 20, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G. Ultrasound shear wave elastography for the evaluation of renal pathological changes in adult patients. Br. J. Radiol. 2023, 96, 20230256. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, H.W.; Kim, P.H.; Suh, C.H.; Yoon, H.M. Technical performance of acoustic radiation force impulse imaging for measuring renal parenchymal stiffness: A systematic review and meta-analysis. J. Ultrasound Med. 2021, 40, 2639–2653. [Google Scholar] [CrossRef]
- Grenier, N.; Gennisson, J.L.; Cornelis, F.; Le Bras, Y.; Couzi, L. Renal ultrasound elastography. Diagn. Interv. Imaging 2013, 94, 545–550. [Google Scholar] [CrossRef]
- Asano, K.; Ogata, A.; Tanaka, K.; Ide, Y.; Sankoda, A.; Kawakita, C.; Nishikawa, M.; Ohmori, K.; Kinomura, M.; Shimada, N.; et al. Acoustic radiation force impulse elastography of the kidneys: Is shear wave velocity affected by tissue fibrosis or renal blood flow? J. Ultrasound Med. 2014, 33, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qin, W. Application of multimodal ultrasonography to predicting the acute kidney injury risk of patients with sepsis: Artificial intelligence approach. PeerJ Comput. Sci. 2024, 10, e2157. [Google Scholar] [CrossRef]



| Vasculitic AKI | Non-Vasculitic AKI |
|---|---|
| N = 22 | N = 18 |
| Lupus vasculitis (1) | Atypical HUS (1) |
| Microscopic polyangiitis (1) | C3 glomerulopathy (1) |
| Sjögren-associated vasculitis (1) | Pyelonephritis (2) |
| Rheumatoid vasculitis (1) | Unknown etiology (3) |
| Granulomatous polyangiitis (4) | Drug-associated TIN (5) |
| Immunoglobulin A vasculitis (14) | Prerenal AKI (6) |
| Overall N = 60 1 | Vasculitic AKI N = 22 1 | Non-Vasculitic AKI N = 18 1 | Healthy Group N = 20 1 | p-Value 2 | |
|---|---|---|---|---|---|
| Age (years) | 38 ± 12 | 39 ± 12 | 41 ± 14 | 36 ± 11 | 0.41 |
| Female | 32 (53) | 11 (50) | 10 (56) | 11 (55) | 0.92 |
| Body mass index (kg/m2) | 25 ± 2.9 | 24.6 ± 3.4 | 26.1 ± 2.4 | 24.6 ± 2.6 | 0.08 |
| Serum creatinine (mg/dL) | 1.53 ± 1.54 | 1.43 ± 1.69 | 2.66 ± 1.53 | 0.63 ± 0.15 | <0.01 |
| Glomerular filtration rate (mL/min/1.73 m2) | 85 ± 47 | 85 ± 41 | 35 ± 25 | 129 ± 5 | <0.01 |
| Left kidney craniocaudal length (mm) | 110 ± 12 | 111 ± 10 | 117 ± 10 | 104 ± 11 | 0.01 |
| Left kidney parenchymal thickness (mm) | 16 ± 3.5 | 15.5 ± 3.5 | 16.7 ± 3.3 | 15.8 ± 3.8 | 0.43 |
| Left kidney cortical stiffness (kPa) | 7.33 ± 2.45 | 9.37 ± 1.96 | 6.79 ± 2.26 | 5.56 ± 1.16 | <0.01 |
| Right kidney craniocaudal length (mm) | 110 ± 10 | 112 ± 11 | 114 ± 11 | 109 ± 8 | 0.05 |
| Right kidney parenchymal thickness (mm) | 14.8 ± 3.8 | 15.3 ± 3.5 | 16 ± 4.5 | 13.3 ± 3.1 | 0.05 |
| Right kidney cortical stiffness (kPa) | 7.3 ± 2.55 | 9.63 ± 2.31 | 6.43 ± 1.71 | 5.51 ± 1.15 | <0.01 |
| Mean kidney cortical stiffness (kPa) | 7.31 ± 2.37 | 9.5 ± 1.9 | 6.61 ± 1.89 | 5.53 ± 0.92 | <0.01 |
| Patients with Unfavorable Renal Outcomes N = 3 | Patients with Favorable Renal Outcomes N = 9 | p-Value | |
|---|---|---|---|
| Left kidney cortical stiffness kPa, median (min–max) | 11.2 (10–12.6) | 9.6 (5.6–11.8) | 0.06 |
| Right kidney cortical stiffness kPa, median (min–max) | 12.3 (10.5–14) | 8.5 (5.6–13) | 0.049 |
| Mean cortical stiffness of both kidneys, median (min–max) | 11.2 (10.8–13.3) | 9.1 (5.6–11.2) | 0.046 |
| Age, years | 47 (37–57) | 32 (21–47) | 0.06 |
| Baseline serum creatinine, mg/dL median (min–max) | 0.5 (0.4–0.7) | 0.8 (0.5–1.5) | 0.06 |
| Baseline proteinuria level, mg/day median (min–max) | 730 (420–2200) | 336 (280–1080) | 0.22 |
| Baseline BMI, kg/m2, median (min–max) | 25.7 (23.5–26.9) | 24.2 (22.5–25.7) | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yıldırım, F.; Mutlu, S.; Sam Ozdemir, M.; Yalcin Mutlu, M.; Temiz, A.; Tolu, S.; Akkuzu, G.; Sevinc Ozgur, D.; Karaalioglu, B.; Deniz, R.; et al. Renal Shear Wave Elastography for Differentiating Vasculitic and Non-Vasculitic Acute Kidney Injury. J. Clin. Med. 2026, 15, 1122. https://doi.org/10.3390/jcm15031122
Yıldırım F, Mutlu S, Sam Ozdemir M, Yalcin Mutlu M, Temiz A, Tolu S, Akkuzu G, Sevinc Ozgur D, Karaalioglu B, Deniz R, et al. Renal Shear Wave Elastography for Differentiating Vasculitic and Non-Vasculitic Acute Kidney Injury. Journal of Clinical Medicine. 2026; 15(3):1122. https://doi.org/10.3390/jcm15031122
Chicago/Turabian StyleYıldırım, Fatih, Samet Mutlu, Merve Sam Ozdemir, Melek Yalcin Mutlu, Alp Temiz, Sena Tolu, Gamze Akkuzu, Duygu Sevinc Ozgur, Bilgin Karaalioglu, Rabia Deniz, and et al. 2026. "Renal Shear Wave Elastography for Differentiating Vasculitic and Non-Vasculitic Acute Kidney Injury" Journal of Clinical Medicine 15, no. 3: 1122. https://doi.org/10.3390/jcm15031122
APA StyleYıldırım, F., Mutlu, S., Sam Ozdemir, M., Yalcin Mutlu, M., Temiz, A., Tolu, S., Akkuzu, G., Sevinc Ozgur, D., Karaalioglu, B., Deniz, R., Yıldız, G., & Bes, C. (2026). Renal Shear Wave Elastography for Differentiating Vasculitic and Non-Vasculitic Acute Kidney Injury. Journal of Clinical Medicine, 15(3), 1122. https://doi.org/10.3390/jcm15031122

