Correlations of Glycaemic Index and Estimated Whole Blood Viscosity with Blood Cell Indices in Diabetes Mellitus Management: A Clinical Laboratory Medicine Observational Cohort Study †
Abstract
1. Introduction
- How does eWBV correlate with the indices of RBC, platelet, and WBC?
- Which of the blood cell counts and indices rank most strongly correlated with changes in HbA1c?
2. Materials and Methods
- ❖
- The independent variables included haematocrit, haemoglobin, and RDW; as well as cell counts of platelet, RBC, and WBC—i.e., six independent variables from FBC. The other two independent variables were serum total protein levels and HbA1c.
- ❖
- The dependent variables: eWBV was derived from haematocrit and serum total protein levels, based on the published formula [7,8]. The other nine dependent variables with associated references included:
- RBC indices as reported on routine FBC:
- MCV;
- MCH;
- MCHC.
- Platelet count indices:
- WBC ratios, more specifically, lymphocyte ratios [45]:
- Neutrophil/Lymphocyte ratio (NLR);
- Platelet/Lymphocyte Ratio (PLR);
- Monocyte/Lymphocyte Ratio (MLR).
3. Results
3.1. Question 1: How Does eWBV Correlate with Indices of RBC, Platelet and WBC?
3.2. Question 2: Which of the Blood Cell Counts and Indices Rank Most Strongly Correlated with Increasing HbA1c?
4. Discussion
Implications for Clinical Medicine and Personalised Care
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.D.; et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Nwose, E.U.; Butkowski, E.G. Algorithm for whole blood viscosity: Implication for antiplatelet bleeding risk assessment. Aust. J. Med. Sci. 2013, 34, 50–55. [Google Scholar]
- Nwose, E.U.; Bwititi, P.T. Whole blood viscosity: Affordances and re-evaluation of sensitivity and specificity for clinical use. Int. J. Biomed. Lab. Sci. 2022, 11, 96–103. [Google Scholar]
- Ozcan Cetin, E.H.; Cetin, M.S.; Canpolat, U.; Kalender, E.; Topaloglu, S.; Aras, D.; Aydogdu, S. The forgotten variable of shear stress in mitral annular calcification: Whole blood viscosity. Med. Princ. Pract. 2015, 24, 444–450. [Google Scholar] [CrossRef]
- Cakmak, G.; Alkan, F.A.; Korkmaz, K.; Saglam, Z.A.; Karis, D.; Yenigun, M.; Ercan, M. Blood viscosity as a forgotten factor and its effect on pulmonary flow. Transl. Respir. Med. 2013, 1, 3. [Google Scholar] [CrossRef]
- Celik, T.; Balta, S.; Ozturk, C.; Iyisoy, A. Whole blood viscosity and cardiovascular diseases: A forgotten old player of the game. Med. Princ. Pract. 2016, 25, 499–500. [Google Scholar] [CrossRef]
- Tamariz, L.J.; Young, J.H.; Pankow, J.S.; Yeh, H.-C.; Schmidt, M.I.; Astor, B.; Brancati, F.L. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: The atherosclerosis risk in communities (ARIC) study. Am. J. Epidemiol. 2008, 168, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Nwose, E.U. Cardiovascular risk assessment and support—Whole blood viscosity assessment issues I: Extrapolation chart and reference values. N. Am. J. Med. Sci. 2010, 2, 165–169. [Google Scholar] [PubMed]
- Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Nwose, E.U. Blood viscosity changes in diabetes mellitus: A 20-year bibliometric review and future directions. Cureus 2024, 16, e64211. [Google Scholar] [CrossRef] [PubMed]
- Nwose, E.U.; Butkowski, E.; Cann, N.G. Whole blood viscosity determination in diabetes management: Perspective in practice. N. Am. J. Med. Sci. 2009, 1, 110–113. [Google Scholar]
- Muldoon, M.F.; Herbert, T.B.; Patterson, S.M.; Kameneva, M.; Raible, R.; Manuck, S.B. Effects of acute psychological stress on serum lipid levels, hemoconcentration, and blood viscosity. Arch. Intern. Med. 1995, 155, 615–620. [Google Scholar] [CrossRef]
- Alamri, B.N.; Bahabri, A.; Aldereihim, A.A.; Alabduljabbar, M.; Alsubaie, M.M.; Alnaqeb, D.; Almogbel, E.; Metias, N.S.; Alotaibi, O.A.; Al-Rubeaan, K. Hyperglycemia effect on red blood cells indices. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Han, K.; Xu, M.; Li, L.; Qian, J.; Li, L.; Li, X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front. Physiol. 2022, 13, 827428. [Google Scholar] [CrossRef]
- Turpin, C.; Catan, A.; Guerin-Dubourg, A.; Debussche, X.; Bravo, S.B.; Álvarez, E.; Van Den Elsen, J.; Meilhac, O.; Rondeau, P.; Bourdon, E. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS ONE 2020, 15, e0235335. [Google Scholar] [CrossRef]
- Ercan, M.; Konukoğlu, D.; Erdem, T.; Onen, S. The effects of cholesterol levels on hemorheological parameters in diabetic patients. Clin. Hemorheol. Microcirc. 2002, 26, 257–263. [Google Scholar]
- Doig, K.; Zhang, B. A Methodical Approach to Interpreting the Red Blood Cell Parameters of the Complete Blood Count. Am. Soc. Clin. Lab. Sci. 2017, 30, 173–185. [Google Scholar] [CrossRef]
- Obeagu, E.I. Red blood cells as biomarkers and mediators in complications of diabetes mellitus: A review. Medicine 2024, 103, e37265. [Google Scholar] [CrossRef] [PubMed]
- Jie Chee, Y.; Seneviratna, A.; Joo Lim, C.; Chiong, C.X.; Peh, D.S.; Hawkins, R.; Chew, D.E.; Dalan, R. Red cell distribution width is associated with mortality and cardiovascular complications in diabetes mellitus in Singapore. Eur. J. Prev. Cardiol. 2020, 27, 216–219. [Google Scholar] [CrossRef] [PubMed]
- von Tempelhoff, G.-F.; Schelkunov, O.; Demirhan, A.; Tsikouras, P.; Rath, W.; Velten, E.; Csorba, R. Correlation between blood rheological properties and red blood cell indices(MCH, MCV, MCHC) in healthy women. Clin. Hemorheol. Microcirc. 2016, 62, 45–54. [Google Scholar] [CrossRef]
- Asmamaw, M.; Sime, T.; Kene, K.; Fekadie Baye, M.; Teshome, M.; Zawdie, B. Evaluation of Red Blood Cell Parameters as a Biomarker for Long-Term Glycemic Control Monitoring Among Type 2 Diabetic Patients in Southwest Ethiopia: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2021, 14, 4993–5000. [Google Scholar] [CrossRef]
- Kachekouche, Y.; Dali-Sahi, M.; Benmansour, D.; Dennouni-Medjati, N. Hematological profile associated with type 2 diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 309–312. [Google Scholar] [CrossRef]
- Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Turczyński, B.; Michalska-Małecka, K.; Słowińska, L.; Szczęsny, S.; Romaniuk, W. Correlations between the severity of retinopathy in diabetic patients and whole blood and plasma viscosity. Clin. Hemorheol. Microcirc. 2003, 29, 129–137. [Google Scholar] [CrossRef]
- Alexandru, N.; Andrei, E.; Dragan, E.; Georgescu, A. Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biol. Cell 2015, 107, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Foy, B.H.; Carlson, J.C.T.; Aguirre, A.D.; Higgins, J.M. Platelet-white cell ratio is more strongly associated with mortality than other common risk ratios derived from complete blood counts. Nat. Commun. 2025, 16, 1113. [Google Scholar] [CrossRef]
- Amalia, L.; Dalimonthe, N.Z. Clinical significance of Platelet-to-White Blood Cell Ratio (PWR) and National Institute of Health Stroke Scale (NIHSS) in acute ischemic stroke. Heliyon 2020, 6, e05033. [Google Scholar] [CrossRef]
- Liu, F.; Wang, T.; Wang, S.; Zhao, X.; Hua, Y. The association of platelet to white blood cell ratio with diabetes: A nationwide survey in China. Front. Endocrinol. 2024, 15, 1418583. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, R.; Chen, X.; Zhao, Y.; Hao, Q. Platelet-to-white blood cell ratio: A feasible predictor for unfavorable functional outcome in patients with aneurysmal subarachnoid hemorrhage. J. Clin. Neurosci. 2023, 115, 108–113. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Zhang, Q.; Hou, F.; Wang, L.; Zheng, Z.; Guo, Y.; Chen, Z.; Hernesniemi, J.; Feng, G.; et al. Prognostic significance of white blood cell to platelet ratio in delayed cerebral ischemia and long-term clinical outcome after aneurysmal subarachnoid hemorrhage. Front. Neurol. 2023, 14, 1180178. [Google Scholar] [CrossRef]
- Jiang, D.; Houck, K.L.; Murdiyarso, L.; Higgins, H.; Rhoads, N.; Romero, S.K.; Kozar, R.; Nascimbene, A.; Gernsheimer, T.B.; Sanchez, Z.A.C.; et al. RBCs regulate platelet function and hemostasis under shear conditions through biophysical and biochemical means. Blood 2024, 144, 1521–1531. [Google Scholar] [CrossRef]
- Schneider, D.J. Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care 2009, 32, 525–527. [Google Scholar] [CrossRef]
- Kleinveld, D.J.B.; van Amstel, R.B.E.; Wirtz, M.R.; Geeraedts, L.M.G.; Goslings, J.C.; Hollmann, M.W.; Juffermans, N.P. Platelet-to-red blood cell ratio and mortality in bleeding trauma patients: A systematic review and meta-analysis. Transfusion 2021, 61, S243–S251. [Google Scholar] [CrossRef]
- Tenekecioglu, E.; Yilmaz, M.; Yontar, O.C.; Bekler, A.; Peker, T.; Karaagac, K.; Ozluk, O.A.; Agca, F.V.; Kuzeytemiz, M.; Senturk, M.; et al. Red blood cell distribution width is associated with myocardial injury in non-ST-elevation acute coronary syndrome. Clinics 2015, 70, 18–23. [Google Scholar] [CrossRef]
- Liang, H.; Liu, P.; Guo, L.; Feng, J.; Yin, C.; Zhao, D.; Chen, L. Predictive value of admission red cell distribution width-to-platelet ratio for 30-day death in patients with spontaneous intracerebral hemorrhage: An analysis of the MIMIC database. Front. Neurol. 2023, 14, 1221335. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, F.; Schenk, L.M.; Bernstock, J.D.; Bode, C.; Borger, V.; Gessler, F.A.; Güresir, E.; Hamed, M.; Potthoff, A.L.; Putensen, C.; et al. Elevated Red Cell Distribution Width to Platelet Ratio Is Associated With Poor Prognosis in Patients With Spontaneous, Deep-Seated Intracerebral Hemorrhage. Front. Neurol. 2021, 12, 751510. [Google Scholar] [CrossRef]
- Rezaei Shahrabi, A.; Arsenault, G.; Nabipoorashrafi, S.A.; Lucke-Wold, B.; Yaghoobpoor, S.; Meidani, F.Z.; Rahmati, R.; Ghaedi, A.; Khanzadeh, S. Relationship between neutrophil to lymphocyte ratio and diabetic peripheral neuropathy: A systematic review and meta-analysis. Eur. J. Med. Res. 2023, 28, 523. [Google Scholar] [CrossRef] [PubMed]
- Duman, T.T.; Aktas, G.; Atak, B.M.; Kocak, M.Z.; Erkus, E.; Savli, H. Neutrophil to lymphocyte ratio as an indicative of diabetic control level in type 2 diabetes mellitus. Afr. Health Sci. 2019, 19, 1602–1606. [Google Scholar] [CrossRef]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Aimaretti, G.; Marino, P.; Sinigaglia, F.; Suryapranata, H.; De Luca, G. Impact of diabetes on neutrophil-to-lymphocyte ratio and its relationship to coronary artery disease. Diabetes Metab. 2015, 41, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Mokgalaboni, K.; Dludla, P.V.; Nyambuya, T.M.; Yakobi, S.H.; Mxinwa, V.; Nkambule, B.B. Monocyte-mediated inflammation and cardiovascular risk factors in type 2 diabetes mellitus: A systematic review and meta-analysis of pre-clinical and clinical studies. JRSM Cardiovasc. Dis. 2020, 9, 2048004019900748. [Google Scholar] [CrossRef]
- Dera, A.A.; Alghamdi, A.A.; Al-Shahrani, M.; Al-Gahtani, R.M.; Alghamdi, B.S.; Zaman, G.S.; Rasheed, M.A.; Al-Shehri, H.; Al-Qhtani, L.; Ali, S.P.; et al. Neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios as inflammatory markers in the assessment of glycemic status in diabetic patients of Asir region. Anim. Models Exp. Med. 2025, 8, 1567–1578. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Jia, W.; Wang, K.; Wang, W.; Diao, W.; Ou, F.; Ma, J.; Yang, Y. Association of the systemic immuno-inflammation index, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio with diabetic microvascular complications. Front. Endocrinol. 2024, 15, 1367376. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chen, M.; Feng, Q.; Wan, H.; Wang, J.; Yang, F.; Cao, H. The Platelet-to-Lymphocyte Ratio Predicts Diabetic Retinopathy in Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2022, 15, 3617–3626. [Google Scholar] [CrossRef]
- Nwose, E.; Jelinek, H.; Richards, R. Erythrocyte oxidative stress in clinical management of diabetes and its cardiovascular complications. Br. J. Biomed. Sci. 2007, 64, 9. [Google Scholar] [CrossRef]
- Stiff, P.J. Chapter 154 Platelets. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Barron, H.V.; Cannon, C.P.; Murphy, S.A.; Braunwald, E.; Gibson, C.M. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: A thrombolysis in myocardial infarction 10 substudy. Circulation 2000, 102, 2329–2334. [Google Scholar] [CrossRef]
- Tennant, P.W.G.; Arnold, K.F.; Ellison, G.T.H.; Gilthorpe, M.S. Analyses of ‘change scores’ do not estimate causal effects in observational data. Int. J. Epidemiol. 2022, 51, 1604–1615. [Google Scholar] [CrossRef]
- Nwose, E.U.; Bwititi, P.T. Correlation of whole blood viscosity and HbA1c with age in diabetes patients: Implications for diabetes research and management in low-mid income countries. Afr. J. Med. Med. Sci. 2019, 48, 445–454. [Google Scholar]
- Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Nwose, E.U. Assessment of changes in glycaemic control and blood viscosity determinants: Does glycaemia impact on haematocrit, proteinaemia or dyslipidaemia? Med. Sci. 2025, 13, 303. [Google Scholar]
- Nwose, E.U.; Bwititi, P.T. Correlation between blood coagulation profile and viscosity: Clinical laboratory observational study. Med. Sci. 2025, 13, 20. [Google Scholar] [CrossRef]
- Richards, R.S.; Nwose, E.U. Blood viscosity at different stages of diabetes pathogenesis. Br. J. Biomed. Sci. 2010, 67, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Patro, S.; Sharma, V.; Choudhary, A.; Desale, S.; Nath, P. Red Blood Cell Distribution Width-to-Platelet Count Ratio as a Prognostic Marker for Predicting Severity and Various Outcomes in Acute Pancreatitis. Cureus 2025, 17, e81747. [Google Scholar] [CrossRef]
- Cetinkaya, E.; Senol, K.; Saylam, B.; Tez, M. Red cell distribution width to platelet ratio: New and promising prognostic marker in acute pancreatitis. World J. Gastroenterol. 2014, 20, 14450–14454. [Google Scholar] [CrossRef]
- Atak, B.; Aktas, G.; Duman, T.T.; Erkus, E.; Kocak, M.Z.; Savli, H. Diabetes control could through platelet-to-lymphocyte ratio in hemograms. Rev. Assoc. Med. Bras. 2019, 65, 38–42. [Google Scholar] [CrossRef]
- Balta, S.; Ozturk, C. The platelet-lymphocyte ratio: A simple, inexpensive and rapid prognostic marker for cardiovascular events. Platelets 2015, 26, 680–681. [Google Scholar] [CrossRef]
- Ren, A.; Cao, S.; Gong, D.; Qu, X. Lymphocyte-to-monocyte ratio is associated with all-cause and cardiovascular mortality among individuals with diabetes mellitus in the National Health and Nutrition Examination Survey 2003–2018 cohort. BMC Cardiovasc. Disord. 2025, 25, 714. [Google Scholar] [CrossRef]
- Luo, S.; Yang, W.S.; Shen, Y.Q.; Chen, P.; Zhang, S.Q.; Jia, Z.; Li, Q.; Zhao, J.T.; Xie, P. The clinical value of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and D-dimer-to-fibrinogen ratio for predicting pneumonia and poor outcomes in patients with acute intracerebral hemorrhage. Front. Immunol. 2022, 13, 1037255. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Hu, Y.; Yang, A.; Zhang, Y.; Hong, Y. The trend of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in spontaneous intracerebral hemorrhage and the predictive value of short-term postoperative prognosis in patients. Front. Neurol. 2023, 14, 1189898. [Google Scholar] [CrossRef]
- Malaba, J.; Kosiyo, P.; Guyah, B. Haemoglobin types and variant interference with HbA1c and its association with uncontrolled HbA1c in type 2 diabetes mellitus. BMC Res. Notes 2024, 17, 342. [Google Scholar] [CrossRef]
- Simmons, D.; Hlaing, T. Interpretation of HbA1c: Association with mean cell volume and haemoglobin concentration. Diabet. Med. 2014, 31, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.P.; Wall, C.; O’Broin, S.D. Haemoglobin, not haematocrit, should be the preferred parameter for the evaluation of anaemia in renal patients. Nephrol. Dial. Transplant. 2001, 16, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.E.; Musa, I.R.; Rayis, D.A.; Adam, I.; Gasim, I.G. Glycated hemoglobin and red blood cell indices in non-diabetic pregnant women. Clin. Pract. 2017, 7, 999. [Google Scholar] [CrossRef][Green Version]
- Bao, X.; Wan, M.; Gu, Y.; Song, Y.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Xia, Y.; Shi, H.; et al. Red cell distribution width is associated with hemoglobin A1C elevation, but not glucose elevation. J. Diabetes Its Complicat. 2017, 31, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Orsi, E.; Bonora, E.; Solini, A.; Fondelli, C.; Trevisan, R.; Vedovato, M.; Cavalot, F.; Zerbini, G.; Morano, S.; Nicolucci, A.; et al. Association between on-treatment haemoglobin A(1c) and all-cause mortality in individuals with type 2 diabetes: Importance of personalized goals and type of anti-hyperglycaemic treatment. J. Clin. Med. 2020, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Miceli, G.; Ciaccio, A.M.; Tuttolomondo, A. From circulating biomarkers to polymorphic variants: A narrative review of challenges in thrombophilia evaluation. J. Clin. Med. 2025, 14, 3448. [Google Scholar] [CrossRef] [PubMed]
| Mean | Median | Mode | SD | |
|---|---|---|---|---|
| HbA1c (%) | 7.67 | 7.10 | 5.70 | 1.87 |
| eWBV (mPas) | 17.18 | 17.22 | 17.05 | 0.90 |
| Hgb (g/L) | 148.01 | 148.00 | 152.00 | 15.73 |
| RBC (106/µL) | 5.02 | 5.00 | 5.30 | 0.48 |
| HCT | 0.45 | 0.44 | 0.43 | 0.04 |
| MCV (fL) | 88.91 | 90.00 | 91.00 | 4.14 |
| MCH (pg) | 29.55 | 29.70 | 29.70 | 1.79 |
| MCHC (g/dL) | 332.55 | 333.00 | 331.00 | 10.97 |
| RDW (%) | 13.21 | 13.00 | 12.80 | 1.19 |
| WBC 103/µL | 7.85 | 7.50 | 7.40 | 2.16 |
| Platelets 103/µL | 264.66 | 251.00 | 246.00 | 66.10 |
| PWR | 35.60 | 34.33 | 43.06 | 10.94 |
| PRR * | 20.10 | 19.96 | 19.51 | 5.12 |
| RPR | 20.11 | 19.22 | 21.23 | 4.98 |
| MLR | 0.41 | 0.26 | 0.24 | 1.92 |
| NLR | 1.94 | 1.78 | 1.58 | 0.78 |
| PLR | 117.66 | 116.26 | 69.23 | 44.23 |
| Variable | Observation (Mean) | Reference Range * |
|---|---|---|
| HbA1c% | 7.67 | <5.7 |
| eWBV mPas | 17.18 | 15.01–19.01 |
| Hgb g/L | 148.01 | 135–175 |
| RBC 106/µL | 5.02 | 4.7–6.1 |
| HCT | 0.45 | 0.37–0.54 |
| MCV (fL) | 88.91 | 80–100 |
| MCH (pg) | 29.55 | 27–33 |
| MCHC g/L | 332.55 | 320–360 |
| RDW% | 13.21 | 11.5–14.5 |
| WBC 103/L | 7.85 | 4.0–11.0 |
| Platelets 103/µL | 264.66 | 150–450 |
| PWR | 35.60 | 20–40 |
| PRR † | 1:20.10 | 1:14–1:31 |
| RPR% | 20.11 | 4.5–11.5 |
| MLR | 0.41 | 0.2–0.4 |
| NLR | 1.94 | 1–3 |
| PLR | 117.66 | 90–180 |
| HbA1c | eWBV | |
|---|---|---|
| HbA1c | 1.000 | |
| eWBV (HSS:208 s−1) | −0.019 | 1.000 |
| Haemoglobin | 0.027 | 0.463 |
| RBC | 0.087 | 0.524 |
| Haematocrit | −0.014 | 0.491 |
| MCV | −0.192 | −0.135 |
| MCH | −0.099 | −0.023 |
| MCHC | 0.102 | 0.146 |
| RDW | −0.159 | −0.044 |
| WBC | 0.049 | 0.223 |
| Platelets | 0.060 | 0.113 |
| PWR | −0.036 | −0.086 |
| PRR | 0.007 | −0.078 |
| RPR | 0.111 | 0.142 |
| MLR | −0.044 | 0.139 |
| NLR | 0.063 | 0.093 |
| PLR | 0.010 | −0.028 |
| Variables | Lower Period | Higher Period | Change Score |
|---|---|---|---|
| HbA1c% | 7.020 | 8.330 | 1.310 * |
| eWBV mPas | 17.190 | 17.170 | −0.020 |
| Hgb g/L | 147.733 | 148.286 | 0.552 |
| RBC 106/µL | 5.010 | 5.030 | 0.020 |
| HCT | 0.445 | 0.446 | 0.001 |
| MCV (fL) | 88.910 | 88.900 | −0.010 |
| MCH (pg) | 29.530 | 29.570 | 0.040 |
| MCHC g/L | 33.200 | 33.300 | 0.100 |
| RDW% | 13.302 | 13.111 | −0.190 ** |
| WBC 103/L | 7.970 | 7.727 | −0.243 |
| Platelets 103/µL | 266.133 | 263.190 | −2.943 |
| PWR | 35.540 | 35.660 | 0.120 |
| PRR † | 19.810 | 20.390 | 0.580 |
| RPR% | 20.090 | 20.130 | 0.040 |
| MLR | 0.270 | 0.540 | 0.270 |
| NLR | 1.900 | 1.970 | 0.070 |
| PLR | 115.440 | 119.870 | 4.430 |
| HbA1c | eWBV | |
|---|---|---|
| HbA1c | 1 | |
| eWBV | −0.07 | 1 |
| Hgb | 0.022 | 0.657 |
| RBC | 0.297 | 0.539 |
| HCT | 0.01 | 0.639 |
| MCV | −0.471 | 0.133 |
| MCH | −0.373 | 0.207 |
| MCHC | 0.006 | 0.198 |
| RDW | −0.001 | −0.056 |
| WBC | 0.048 | 0.001 |
| PLT | 0.195 | −0.083 |
| PWR | 0.044 | −0.08 |
| PRR | 0.025 | 0.243 |
| RPR | 0.185 | −0.048 |
| MLR | −0.074 | 0.12 |
| NLR | −0.031 | 0.096 |
| PLR | 0.016 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Ong, L.K.; Nwose, E.U. Correlations of Glycaemic Index and Estimated Whole Blood Viscosity with Blood Cell Indices in Diabetes Mellitus Management: A Clinical Laboratory Medicine Observational Cohort Study. J. Clin. Med. 2026, 15, 892. https://doi.org/10.3390/jcm15020892
Mbah JI, Bwititi PT, Gyawali P, Ong LK, Nwose EU. Correlations of Glycaemic Index and Estimated Whole Blood Viscosity with Blood Cell Indices in Diabetes Mellitus Management: A Clinical Laboratory Medicine Observational Cohort Study. Journal of Clinical Medicine. 2026; 15(2):892. https://doi.org/10.3390/jcm15020892
Chicago/Turabian StyleMbah, Jovita I., Phillip T. Bwititi, Prajwal Gyawali, Lin K. Ong, and Ezekiel U. Nwose. 2026. "Correlations of Glycaemic Index and Estimated Whole Blood Viscosity with Blood Cell Indices in Diabetes Mellitus Management: A Clinical Laboratory Medicine Observational Cohort Study" Journal of Clinical Medicine 15, no. 2: 892. https://doi.org/10.3390/jcm15020892
APA StyleMbah, J. I., Bwititi, P. T., Gyawali, P., Ong, L. K., & Nwose, E. U. (2026). Correlations of Glycaemic Index and Estimated Whole Blood Viscosity with Blood Cell Indices in Diabetes Mellitus Management: A Clinical Laboratory Medicine Observational Cohort Study. Journal of Clinical Medicine, 15(2), 892. https://doi.org/10.3390/jcm15020892

