Variability in Post-Discharge Mortality Rates and Predictors over Time: Data from a Five-Year Ward-Wide Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Original Study Cohort
2.1.1. Clinical Variables
2.1.2. Assistance-Related Variables
2.2. Public Health Data
2.3. Outcomes and Timeframes of Interest
2.4. Statistical Analysis
3. Results
3.1. General Clinical Features
3.2. Post-Discharge Mortality
3.3. Determinants of Early, Intermediate, and Late Post-Discharge Mortality
3.3.1. Univariate Analysis
| Variable | Total | Early (Year 1) | Intermediate (Year 2–4) | Late (Year 5) | |||
|---|---|---|---|---|---|---|---|
| Alive | Dead | Alive | Dead | Alive | Dead | ||
| n = 896 | n = 606 | n = 290 | n = 415 | n = 191 | n = 386 | n = 29 | |
| Demographics and outcomes | |||||||
| Age (years): median (IQR) | 74 (62–81) | 72 (57–80) | 76 (69–83) *** | 68 (52–77) | 77 (71–84) *** | 67 (51–77) | 77 (74–80) *** |
| Sex (female): n (%) | 376 (42) | 271 (45) | 105 (36) * | 198 (48) | 73 (38) * | 185 (48) | 13 (45) |
| Length of hospital stay(days): median (IQR) | 12 (8–20) | 12 (8–19) | 13 (9–22) | 12 (8–19) | 12 (8–19) | 12 (8–19) | 12 (8–20) |
| Nosocomial infections during hospitalisation: n (%) | 112 (13) | 63 (10) | 49 (17) ** | 40 (10) | 23 (12) | 35 (9) | 5 (17) |
| Causes of morbidity: n (%) | |||||||
| ADL/IADL dependence | 322 (36) | 169 (28) | 153 (53) *** | 101 (24) | 68 (36) ** | 90 (23) | 11 (38) |
| Cardiovascular disorders | 622 (69) | 408 (67) | 214 (74) * | 261 (63) | 147 (77) ** | 234 (61) | 27 (93) *** |
| Hypertension | 481 (54) | 312 (51) | 169 (58) | 201 (48) | 111 (58) * | 185 (48) | 16 (55) |
| Cardiac disorders | 469 (52) | 303 (50) | 166 (57) *** | 175 (42) | 128 (67) *** | 154 (40) | 21 (72) ** |
| Lung disease | 435 (49) | 276 (46) | 159 (55) ** | 173 (42) | 103 (54) ** | 157 (41) | 16 (55) |
| Kidney disease | 294 (33) | 178 (29) | 116 (40) ** | 110 (27) | 68 (36) * | 102 (26) | 8 (28) |
| Liver disease | 135 (15) | 77 (13) | 58 (20) ** | 51 (12) | 26 (14) | 48 (12) | 3 (10) |
| Cancer | 276 (31) | 132 (22) | 144 (50) *** | 73 (18) | 59 (31) *** | 67 (17) | 6 (21) |
| End-stage cancer | 52 (6) | 11 (2) | 41 (14) *** | 7 (2) | 4 (2) | 7 (2) | 0 (0) |
| Immune-mediated disorders | 162 (18) | 130 (21) | 32 (11) *** | 101 (24) | 29 (15) * | 99 (26) | 2 (7) * |
| Endocrine-metabolic disorders | 347 (39) | 224 (37) | 123 (42) | 137 (33) | 87 (46) ** | 124 (32) | 13 (45) |
| Neurologic disorders/dementia | 340 (38) | 208 (34) | 132 (46) ** | 128 (31) | 80 (42) ** | 116 (30) | 12 (41) |
| Psychiatric disorders | 79 (9) | 54 (9) | 25 (9) | 42 (10) | 12 (6) | 38 (10) | 4 (14) |
| Vascular/hematologic disorders | 307 (34) | 54 (9) | 26 (9) | 142 (34) | 69 (36) | 136 (35) | 6 (21) |
| Infectious disease | 601 (67) | 402 (66) | 199 (69) | 266 (64) | 136 (71) | 246 (64) | 20 (69) |
| Upper GI disorders | 72 (8) | 40 (7) | 32 (11) * | 24 (6) | 16 (8) | 19 (5) | 5 (17) * |
| Lower GI disorders | 80 (9) | 54 (9) | 26 (9) | 34 (8) | 20 (10) | 32 (8) | 2 (7) |
| Genito-urinary disorders | 98 (11) | 67 (11) | 31 (11) | 41 (10) | 26 (14) | 39 (10) | 2 (7) |
| Musculoskeletal/cutaneous disorders | 185 (21) | 131 (22) | 54 (19) | 93 (22) | 38 (20) | 87 (23) | 6 (21) |
| Ocular/ENT disease | 61 (7) | 41 (7) | 20 (7) | 31 (7) | 10 (5) | 29 (8) | 2 (7) |
| Immunodepression | 191 (21) | 114 (19) | 77 (27) ** | 79 (19) | 35 (18) | 76 (20) | 3 (10) |
| CIRS score: median (IQR) | |||||||
| CIRS total score | 9 (5–12) | 8 (5–11) | 10 (6–14) *** | 7 (5–11) | 9 (6–14) *** | 7 (5–10) | 9 (6–11) |
| CIRS severity score | 0.6 (0.4–0.9) | 0.6 (0.4–0.9) | 0.8 (0.5–1.1) *** | 0.5 (0.4–0.8) | 0.7 (0.5–1.0) ** | 0.5 (0.3–0.8) | 0.7 (0.5–0.9) |
| CIRS comorbidity score | 3 (2–5) | 3 (2–4) | 4 (3–5) *** | 3 (2–4) | 4 (3–5) *** | 3 (2–4) | 4 (2–4) * |
| Intensity of care | |||||||
| NEMS score: median (IQR) | 18 (16–19) | 18 (16–19) | 18 (16–20) *** | 17 (15–19) | 18 (16–19) *** | 17 (15–19) | 19 (18–20) *** |
| Any respiratory support | 478 (53) | 296 (49) | 182 (63) *** | 174 (42) | 122 (64) *** | 153 (40) | 21 (72) ** |
| Oxygen without mechanical ventilation: n (%) | 401 (45) | 255 (42) | 146 (50) * | 153 (37) | 102 (53) *** | 136 (35) | 17 (59) * |
| Mechanical ventilation: n (%) | 83 (9) | 44 (7) | 39 (13) ** | 23 (6) | 21 (11) * | 19 (5) | 4 (14) |
| Percentage of hospitalisation time with at least one exit for procedures: median (IQR) | 13 (0–22) | 13 (0–22) | 13 (0–20) | 15 (0–25) | 11 (0–17) ** | 15 (0–25) | 17 (0–25) |
| Ward-related variables (average): median (IQR) | |||||||
| Infected patients (%) | 72 (68–76) | 71 (68–76) | 72 (68–76) * | 71 (67–75) | 71 (68–76) | 71 (67–75) | 73 (69–75) |
| Patients with immune-mediated disorders (%) | 17 (13–23) | 18 (13–24) | 16 (12–23) * | 18 (13–24) | 18 (13–24) | 18 (12–24) | 16 (13–22) |
| Patients with upper gastrointestinal tract disorders (%) | 10 (7–14) | 10 (7–14) | 10 (6–14) | 11 (7–15) | 10 (6–13) * | 11 (7–15) | 8 (4–11) * |
| Patients with genito-urinary tract disorders (%) | 10 (6–15) | 9 (5–15) | 11 (6–16) | 10 (6–15) | 9 (5–15) | 10 (6–15) | 8 (6–10) * |
| Patients with renal disorders (%) | 29 (23–43) | 30 (23–43) | 29 (24–41) | 30 (23–44) | 29 (23–40) | 30 (23–46) | 26 (22–35) * |
| Patients with vascular/haematological disorders (%) | 33 (29–42) | 33 (29–42) | 32 (29–41) | 33 (29–42) | 33 (29–43) | 33 (29–43) | 30 (28–34) * |
| Patients receiving oxygen without mechanical ventilation (%) | 51 (40–55) | 50 (39–55) | 52 (41–55) | 50 (39–55) | 51 (40–56) | 49 (39–55) | 52 (41–57) |
| Mechanically ventilated patients (%) | 12 (7–14) | 11 (7–14) | 12 (8–14) | 11 (7–14) | 11 (7–14) | 11 (7–14) | 12 (7–16) |
3.3.2. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coaccioli, S. Medicine of complexity: The modern internal medicine. Clin. Ther. 2010, 161, 9–11. [Google Scholar]
- Corazza, G.R.; Formagnana, P.; Lenti, M.V. Bringing complexity into clinical practice: An internistic approach. Eur. J. Intern. Med. 2019, 61, 9–14. [Google Scholar] [CrossRef]
- Lutz, W.; Sanderson, W.; Scherbov, S. The coming acceleration of global population ageing. Nature 2008, 451, 716–719. [Google Scholar] [CrossRef]
- Marengoni, A.; Angleman, S.; Melis, R.; Mangialasche, F.; Karp, A.; Garmen, A.; Meinow, B.; Fratiglioni, L. Aging with multimorbidity: A systematic review of the literature. Ageing Res. Rev. 2011, 10, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Weiss, C.O. Frailty and chronic diseases in older adults. Clin. Geriatr. Med. 2011, 27, 39–52. [Google Scholar] [CrossRef]
- Chomik, R.; McDonald, P.; Piggott, J. Population ageing in Asia and the Pacific: Dependency metrics for policy. J. Econ. Ageing 2016, 8, 5–18. [Google Scholar] [CrossRef]
- Italian National Institute for Statistics (ISTAT). Annuario Statistico Italiano; Italian National Institute for Statistics (ISTAT): Rome, Italy, 2023. [Google Scholar]
- Williams, C.; Maruthappu, M. “Healthconomic crises”: Public health and neoliberal economic crises. Am. J. Public Health 2013, 103, 7–9. [Google Scholar] [CrossRef]
- Coube, M.; Nikoloski, Z.; Mrejen, M.; Mossialos, E. Inequalities in unmet need for health care services and medications in Brazil: A decomposition analysis. Lancet Reg. Health Am. 2023, 19, 100426. [Google Scholar] [CrossRef]
- Maruthappu, M.; Williams, C. The biomarket. Glob. Public Health 2013, 8, 106–119. [Google Scholar] [CrossRef]
- Chevreul, K.; Berg Brigham, K. Financing long-term care for frail elderly in France: The ghost reform. Health Policy 2013, 111, 213–220. [Google Scholar] [CrossRef]
- Martin, S.; Longo, F.; Lomas, J.; Claxton, K. Causal impact of social care, public health and healthcare expenditure on mortality in England: Cross-sectional evidence for 2013/2014. BMJ Open 2021, 11, e046417. [Google Scholar] [CrossRef]
- Acemoglu, D.; Fergusson, L.; Johnson, S. Population and conflict. Rev. Econ. Stud. 2020, 87, 1565–1604. [Google Scholar] [CrossRef]
- Wong, H.J.; Morra, D.; Caesar, M.; Carter, M.W.; Abrams, H. Understanding hospital and emergency department congestion: An examination of inpatient admission trends and bed resources. CJEM 2010, 12, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Eklund, K.; Wilhelmson, K. Outcomes of coordinated and integrated interventions targeting frail elderly people: A systematic review of randomised controlled trials. Health Soc. Care. Community 2009, 17, 447–458. [Google Scholar] [CrossRef]
- Cassini, A.; Plachouras, D.; Eckmanns, T.; Abu Sin, M.; Blank, H.P.; Ducomble, T.; Haller, S.; Harder, T.; Klingeberg, A.; Sixtensson, M.; et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016, 13, e1002150. [Google Scholar] [CrossRef] [PubMed]
- Seib, C.D.; Rochefort, H.; Chomsky-Higgins, K.; Gosnell, J.E.; Suh, I.; Shen, W.T.; Duh, Q.Y.; Finlayson, E. Association of Patient Frailty with Increased Morbidity After Common Ambulatory General Surgery Operations. JAMA Surg. 2018, 153, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.D.; Dai, C.; Srivastava, S.; Smith, C.A.; Gill, S.S. Risk factors, costs and complications of delayed hospital discharge from internal medicine wards at a Canadian academic medical centre: Retrospective cohort study. BMC Health Serv. Res. 2019, 19, 935. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Damanti, S.; Caruso, P.F.; Mette, F.; Pagliula, G.; Cariddi, A.; Sartorelli, S.; Falbo, E.; Scotti, R.; Di Terlizzi, G.; et al. Sustainability in Internal Medicine: A Year-Long Ward-Wide Observational Study. J. Pers. Med. 2024, 14, 115. [Google Scholar] [CrossRef]
- Coventry, P.A.; Grande, G.E.; Richards, D.A.; Todd, C.J. Prediction of appropriate timing of palliative care for older adults with non-malignant life-threatening disease: A systematic review. Age Ageing 2005, 34, 218–227. [Google Scholar] [CrossRef]
- Woodland, H.; Buchanan, R.M.; Pring, A.; Dancox, M.; McCune, A.; Forbes, K.; Verne, J. Inequity in end-of-life care for patients with chronic liver disease in England. Liver Int. 2023, 43, 2393–2403. [Google Scholar] [CrossRef]
- Strang, P.; Furst, P.; Hedman, C.; Bergqvist, J.; Adlitzer, H.; Schultz, T. Chronic obstructive pulmonary disease and lung cancer: Access to palliative care, emergency room visits and hospital deaths. BMC Pulm. Med. 2021, 21, 170. [Google Scholar] [CrossRef]
- Centeno, C.; Lynch, T.; Garralda, E.; Carrasco, J.M.; Guillen-Grima, F.; Clark, D. Coverage and development of specialist palliative care services across the World Health Organization European Region (2005–2012): Results from a European Association for Palliative Care Task Force survey of 53 Countries. Palliat. Med. 2016, 30, 351–362. [Google Scholar] [CrossRef]
- Gore, J.M.; Brophy, C.J.; Greenstone, M.A. How well do we care for patients with end stage chronic obstructive pulmonary disease (COPD)? A comparison of palliative care and quality of life in COPD and lung cancer. Thorax 2000, 55, 1000–1006. [Google Scholar] [CrossRef]
- Sepulveda, C.; Marlin, A.; Yoshida, T.; Ullrich, A. Palliative Care: The World Health Organization’s global perspective. J. Pain Symptom Manag. 2002, 24, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.A.; Jackson, V.A.; Meier, D.E.; Temel, J.S. Early integration of palliative care services with standard oncology care for patients with advanced cancer. CA Cancer J. Clin. 2013, 63, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, D.; Drudi, F.; Monterubbianesi, M.C.; Stocchi, L.; Ferioli, I.; Marzaloni, A.; Tamburini, E.; Sartori, S. Early Palliative Care in Advanced Oncologic and Non-Oncologic Chronic Diseases: A Systematic Review of Literature. Rev. Recent Clin. Trials 2016, 11, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, D.; Tanuseputro, P.; Perez, R.; Pond, G.R.; Seow, H.Y. Early initiation of palliative care is associated with reduced late-life acute-hospital use: A population-based retrospective cohort study. Palliat. Med. 2019, 33, 150–159. [Google Scholar] [CrossRef]
- Walicka, M.; Chlebus, M.; Sliwczynski, A.; Brzozowska, M.; Rutkowski, D.; Czech, M.; Tuszynska, A.; Jacyna, A.; Puzianowska-Kuznicka, M.; Franek, E. Predictors of in-hospital mortality in nonsurgical departments: A multivariable regression analysis of 2 855 029 hospitalizations. Pol. Arch. Intern. Med. 2020, 130, 268–275. [Google Scholar] [CrossRef]
- Demiselle, J.; Duval, G.; Hamel, J.F.; Renault, A.; Bodet-Contentin, L.; Martin-Lefevre, L.; Vivier, D.; Villers, D.; Lefevre, M.; Robert, R.; et al. Determinants of hospital and one-year mortality among older patients admitted to intensive care units: Results from the multicentric SENIOREA cohort. Ann. Intensive Care 2021, 11, 35. [Google Scholar] [CrossRef]
- Lenti, M.V.; Croce, G.; Brera, A.S.; Ballesio, A.; Padovini, L.; Bertolino, G.; Di Sabatino, A.; Klersy, C.; Corazza, G.R. Rate and risk factors of in-hospital and early post-discharge mortality in patients admitted to an internal medicine ward. Clin. Med. 2023, 23, 16–23. [Google Scholar] [CrossRef]
- Perysinaki, G.S.; Theodorakopoulou, V.; Bertsias, A.; Peteinaraki, E.; Tsachakis-Mueck, N.; Giaka, M.; Bertsias, G.K.; Boumpas, D.T.; Panagiotakis, S.H. Almost half of octogenarians and nonagenarians admitted acutely to internal medicine ward die during admission or within 6 months after discharge: Time to redefine treatment goals? J. Am. Geriatr. Soc. 2015, 63, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Linn, B.S.; Linn, M.W.; Gurel, L. Cumulative illness rating scale. J. Am. Geriatr. Soc. 1968, 16, 622–626. [Google Scholar] [CrossRef]
- Theou, O.; Haviva, C.; Wallace, L.; Searle, S.D.; Rockwood, K. How to construct a frailty index from an existing dataset in 10 steps. Age Ageing 2023, 52, afad221. [Google Scholar] [CrossRef]
- Gordon, E.H.; Reid, N.; Khetani, I.S.; Hubbard, R.E. How frail is frail? A systematic scoping review and synthesis of high impact studies. BMC Geriatr. 2021, 21, 719. [Google Scholar] [CrossRef] [PubMed]
- Reis Miranda, D.; Moreno, R.; Iapichino, G. Nine equivalents of nursing manpower use score (NEMS). Intensive Care Med. 1997, 23, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.A.; Canti, V.; Moiola, L.; Magnoni, M.; Rovere-Querini, P.; Coletto, L.A.; Dagna, L.; Manfredi, A.A.; Bozzolo, E.P. Performance of SLE responder index and lupus low disease activity state in real life: A prospective cohort study. Int. J. Rheum. Dis. 2019, 22, 1752–1761. [Google Scholar] [CrossRef]
- Walter, L.C.; Brand, R.J.; Counsell, S.R.; Palmer, R.M.; Landefeld, C.S.; Fortinsky, R.H.; Covinsky, K.E. Development and validation of a prognostic index for 1-year mortality in older adults after hospitalization. JAMA 2001, 285, 2987–2994. [Google Scholar] [CrossRef]
- Bernabeu-Wittel, M.; Murcia-Zaragoza, J.; Hernandez-Quiles, C.; Escolano-Fernandez, B.; Jarava-Rol, G.; Oliver, M.; Diez-Manglano, J.; Ruiz-Cantero, A.; Ollero-Baturone, M.; Researchers, P. Development of a six-month prognostic index in patients with advanced chronic medical conditions: The PALIAR score. J. Pain Symptom Manag. 2014, 47, 551–565. [Google Scholar] [CrossRef]
- Brucato, A.; Ferrari, A.; Tiraboschi, M.; Zucchi, A.; Cogliati, C.; Torzillo, D.; Dentali, F.; Tavecchia, L.; Gessi, V.; Squizzato, A.; et al. Three-month mortality in permanently bedridden medical non-oncologic patients. The BECLAP study (permanently BEdridden, creatinine CLearance, albumin, previous hospital admissions study). Eur. J. Intern. Med. 2020, 72, 60–66. [Google Scholar] [CrossRef]
- Pasina, L.; Cortesi, L.; Tiraboschi, M.; Nobili, A.; Lanzo, G.; Tettamanti, M.; Franchi, C.; Mannucci, P.M.; Ghidoni, S.; Assolari, A.; et al. Risk factors for three-month mortality after discharge in a cohort of non-oncologic hospitalized elderly patients: Results from the REPOSI study. Arch. Gerontol. Geriatr. 2018, 74, 169–173. [Google Scholar] [CrossRef]
- Gomez-Batiste, X.; Martinez-Munoz, M.; Blay, C.; Amblas, J.; Vila, L.; Costa, X.; Villanueva, A.; Espaulella, J.; Espinosa, J.; Figuerola, M.; et al. Identifying patients with chronic conditions in need of palliative care in the general population: Development of the NECPAL tool and preliminary prevalence rates in Catalonia. BMJ Support. Palliat. Care 2013, 3, 300–308. [Google Scholar] [CrossRef]
- Highet, G.; Crawford, D.; Murray, S.A.; Boyd, K. Development and evaluation of the Supportive and Palliative Care Indicators Tool (SPICT): A mixed-methods study. BMJ Support. Palliat. Care 2014, 4, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, F.E.; Bausewein, C.; Verne, J.; Groeneveld, E.I.; Kaloki, Y.E.; Higginson, I.J. How many people need palliative care? A study developing and comparing methods for population-based estimates. Palliat. Med. 2014, 28, 49–58. [Google Scholar] [CrossRef] [PubMed]
- European Union. EUROSTAT: Mortality and Life Expectancy Statistics. 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Mortality_and_life_expectancy_statistics#SE_MAIN_TT (accessed on 1 March 2025).
- Werner, C.; Sturm, M.; Heldmann, P.; Fleiner, T.; Bauer, J.M.; Hauer, K. Predictors of 2-Year Post-Discharge Mortality in Hospitalized Older Patients. J. Clin. Med. 2024, 13, 1352. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu-Wittel, M.; Ollero-Baturone, M.; Moreno-Gavino, L.; Baron-Franco, B.; Fuertes, A.; Murcia-Zaragoza, J.; Ramos-Cantos, C.; Aleman, A.; Fernandez-Moyano, A. Development of a new predictive model for polypathological patients. The PROFUND index. Eur. J. Intern. Med. 2011, 22, 311–317. [Google Scholar] [CrossRef]
- Bernabeu-Wittel, M.; Moreno-Gavino, L.; Ollero-Baturone, M.; Baron-Franco, B.; Diez-Manglano, J.; Rivas-Cobas, C.; Murcia-Zaragoza, J.; Ramos-Cantos, C.; Fernandez-Moyano, A.; PROFUND researchers. Validation of PROFUND prognostic index over a four-year follow-up period. Eur. J. Intern. Med. 2016, 36, 20–24. [Google Scholar] [CrossRef]
- Odden, M.C.; Shlipak, M.G.; Tager, I.B. Serum creatinine and functional limitation in elderly persons. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 370–376. [Google Scholar] [CrossRef]
- El Husseini, N.; Fonarow, G.C.; Smith, E.E.; Ju, C.; Sheng, S.; Schwamm, L.H.; Hernandez, A.F.; Schulte, P.J.; Xian, Y.; Goldstein, L.B. Association of Kidney Function With 30-Day and 1-Year Poststroke Mortality and Hospital Readmission. Stroke 2018, 49, 2896–2903. [Google Scholar] [CrossRef]
- Fede, G.; D’Amico, G.; Arvaniti, V.; Tsochatzis, E.; Germani, G.; Georgiadis, D.; Morabito, A.; Burroughs, A.K. Renal failure and cirrhosis: A systematic review of mortality and prognosis. J. Hepatol. 2012, 56, 810–818. [Google Scholar] [CrossRef]
- Bonanno, E.G.; Figueiredo, T.; Mimoso, I.F.; Morgado, M.I.; Carrilho, J.; Midao, L.; Costa, E. Polypharmacy Prevalence Among Older Adults Based on the Survey of Health, Ageing and Retirement in Europe: An Update. J. Clin. Med. 2025, 14, 1330. [Google Scholar] [CrossRef]
- Jonsdottir, F.; Blondal, A.B.; Gudmundsson, A.; Bates, I.; Stevenson, J.M.; Sigurdsson, M.I. The association of degree of polypharmacy before and after among hospitalised internal medicine patients and clinical outcomes: A retrospective, population-based cohort study. BMJ Open 2024, 14, e078890. [Google Scholar] [CrossRef]
- Fabbian, F.; De Giorgi, A.; Boari, B.; Misurati, E.; Gallerani, M.; Cappadona, R.; Cultrera, R.; Manfredini, R.; Rodriguez Borrego, M.A.; Lopez-Soto, P.J. Infections and internal medicine patients: Could a comorbidity score predict in-hospital mortality? Medicine 2018, 97, e12818. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, P.; Bolognesi, N.; Valpiani, G.; Morotti, C.; Bernardini, D.; Bravi, F.; Di Ruscio, E.; Stefanati, A.; Gabutti, G. A 2-year point-prevalence surveillance of healthcare-associated infections and antimicrobial use in Ferrara University Hospital, Italy. BMC Infect. Dis. 2020, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.A.; Bozzolo, E.P.; Gobbi, A.; Castelli, E.; Centurioni, C.; Di Meo, M.; Della Torre, E.; Di Scala, F.; Morgillo, A.; Marinosci, A.; et al. Outcomes of non-invasive ventilation as the ceiling of treatment in patients with COVID-19. Panminerva Med. 2021, 64, 506–516. [Google Scholar] [CrossRef]
- Curtis, J.R. Palliative and end-of-life care for patients with severe COPD. Eur. Respir. J. 2008, 32, 796–803. [Google Scholar] [CrossRef]
- Patel, K.; Janssen, D.J.; Curtis, J.R. Advance care planning in COPD. Respirology 2012, 17, 72–78. [Google Scholar] [CrossRef]
- Provinciali, L.; Carlini, G.; Tarquini, D.; Defanti, C.A.; Veronese, S.; Pucci, E. Need for palliative care for neurological diseases. Neurol. Sci. 2016, 37, 1581–1587. [Google Scholar] [CrossRef]
- European Union. EUROSTAT: Causes of Death Statistics by Age Group (Updated Up to March 2024). 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Causes_of_death_statistics (accessed on 1 March 2025).
- Crooks, C.J.; Card, T.R.; West, J. Excess long-term mortality following non-variceal upper gastrointestinal bleeding: A population-based cohort study. PLoS Med. 2013, 10, e1001437. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.H.; Ni, P.; Yan, Y.; Ma, W.; Joshi, A.D.; Nguyen, L.H.; Mehta, R.S.; Lochhead, P.; Song, M.; Curhan, G.C. Association of proton pump inhibitor use with all-cause and cause-specific mortality. Gastroenterology 2022, 163, 852–861.e2. [Google Scholar] [CrossRef]
- Maggio, M.; Corsonello, A.; Ceda, G.P.; Cattabiani, C.; Lauretani, F.; Buttò, V.; Ferrucci, L.; Bandinelli, S.; Abbatecola, A.M.; Spazzafumo, L. Proton pump inhibitors and risk of 1-year mortality and rehospitalization in older patients discharged from acute care hospitals. JAMA Intern. Med. 2013, 173, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Lecardane, G.; Carbonara, M.; Fullone, F. The Demographic Trap of Italian Cities. A Multidimensional Analysis. Riv. Ital. Econ. Demogr. Stat. 2024, 78, 51–62. [Google Scholar] [CrossRef]
- Benassi, F.; Tomassini, C.; Di Felice, G. Spatial Heterogeneities or Inequalities? Health Care Supply and Demand of the Older Population in Italy. Appl. Spat. Anal. Policy 2025, 18, 44. [Google Scholar] [CrossRef]
- Naghavi, M.; Zamagni, G.; Abbafati, C.; Armocida, B.; Agodi, A.; Alicandro, G.; Barbic, F.; Barchitta, M.; Bauckneht, M.; Beghi, M. State of health and inequalities among Italian regions from 2000 to 2021: A systematic analysis based on the Global Burden of Disease Study 2021. Lancet Public Health 2025, 10, e309–e320. [Google Scholar] [CrossRef]
- Garattini, L.; Bozzetto, M.; Remuzzi, G.; Freemantle, N.; Nobili, A. Primary care in a National Health Service: Time for radical reform. Fam. Pract. 2022, 39, 994–995. [Google Scholar] [CrossRef]
- Beronja, B.; Gazibara, T.; Dotlic, J.; Nesic, I.; Jankovic, J.; Kapor, S.; Blagojevic, N.; Blagojevic, D.; Guslarevic, I.; Djukic, V. Pre-existing chronic illnesses as a risk factor for the onset of respiratory failure due to COVID-19. Clin. Epidemiol. Glob. Health 2024, 29, 101756. [Google Scholar] [CrossRef]
- Aveyard, P.; Gao, M.; Lindson, N.; Hartmann-Boyce, J.; Watkinson, P.; Young, D.; Coupland, C.A.; San Tan, P.; Clift, A.K.; Harrison, D. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: A population cohort study. Lancet Respir. Med. 2021, 9, 909–923. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Bozzolo, E.P.; Castelli, E.; Marinosci, A.; Angelillo, P.; Damanti, S.; Scotti, R.; Gobbi, A.; Centurioni, C.; Di Scala, F.; et al. Continuous positive airway pressure and pronation outside the Intensive Care Unit in COVID-19 acute respiratory distress syndrome. Minerva Med. 2022, 113, 281–290. [Google Scholar] [CrossRef]
- Maruotti, A.; Jona-Lasinio, G.; Divino, F.; Lovison, G.; Ciccozzi, M.; Farcomeni, A. Estimating COVID-19-induced excess mortality in Lombardy, Italy. Aging Clin. Exp. Res. 2022, 34, 475–479. [Google Scholar] [CrossRef]
- Pilotto, A.; Ferrucci, L.; Franceschi, M.; D’Ambrosio, L.P.; Scarcelli, C.; Cascavilla, L.; Paris, F.; Placentino, G.; Seripa, D.; Dallapiccola, B.; et al. Development and validation of a multidimensional prognostic index for one-year mortality from comprehensive geriatric assessment in hospitalized older patients. Rejuvenation Res. 2008, 11, 151–161. [Google Scholar] [CrossRef]


| Variable | Early (Year 1) | Intermediate (Year 2–4) | Late (Year 5) | |||
|---|---|---|---|---|---|---|
| p | RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | |
| Demographics | ||||||
| Age | <0.001 | 1.04 (1.03–1.06) | <0.001 | 1.06 (1.04–1.08) | 0.008 | 1.05 (1.01–1.09) |
| Sex | 0.071 | - | 0.120 | - | 0.673 | - |
| Nosocomial infections during hospitalisation | 0.689 | - | 0.465 | - | 0.923 | - |
| Causes of morbidity | ||||||
| ADL/IADL dependence | 0.001 | 1.99 (1.31–3.03) | 0.706 | - | 0.939 | - |
| Cardiovascular disorders | 0.569 | - | 0.530 | - | 0.034 | 5.23 (1.13–24.16) |
| Lung disease | 0.008 | 1.72 (1.15–2.58) | 0.036 | 1.58 (1.03–2.42) | 0.073 | - |
| Liver disease | <0.001 | 2.69 (1.59–4.53) | 0.030 | 1.91 (1.06–3.43) | 0.582 | - |
| Kidney disease | 0.017 | 1.70 (1.10–2.63) | 0.436 | - | 0.973 | - |
| Cancer | <0.001 | 5.51 (3.55–8.54) | <0.001 | 2.89 (1.78–4.68) | 0.269 | - |
| Immune-mediated disorders | 0.107 | - | 0.937 | - | 0.310 | - |
| Endocrine-metabolic disorders | 0.202 | - | 0.076 | - | 0.609 | - |
| Neurologic disorders/dementia | 0.010 | 1.71 (1.14–2.58) | 0.039 | 1.58 (1.02–2.45) | 0.535 | - |
| Upper GI disorders | 0.153 | - | 0.138 | - | 0.005 | 5.96 (1.69–20.98) |
| Immunodepression | 0.004 | 2.13 (1.26–3.58) | 0.215 | - | 0.946 | - |
| Intensity of care | - | |||||
| Any respiratory support | 0.032 | 1.56 (1.04–2.34) | 0.016 | 1.7 (1.1–2.61) | 0.085 | - |
| Percentage of hospitalisation time with at least one exit for procedures | 0.089 | - | 0.001 | 0.08 (0.02–0.35) | 0.683 | - |
| Ward-related variables (average) | ||||||
| Infected patients | 0.376 | - | 0.502 | - | 0.142 | - |
| Patients with immune-mediated disorders | 0.414 | - | 0.840 | - | 0.574 | - |
| Patients with upper gastrointestinal tract disorders | 0.334 | - | 0.112 | - | 0.324 | - |
| Patients with genito-urinary tract disorders | 0.850 | - | 0.460 | - | 0.583 | - |
| Patients with renal disorders | 0.182 | - | 0.360 | - | 0.529 | - |
| Patients with vascular/haematological disorders | 0.695 | - | 0.454 | - | 0.267 | - |
| Constant | 0.002 | 0.01 (0–0.17) | <0.001 | 0 (0–0.07) | 0.005 | 0 (0–0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ramirez, G.A.; Germinario, B.N.; Benanti, G.; Caruso, P.F.; Mette, F.; Pagliula, G.; Cariddi, A.; Sartorelli, S.; Falbo, E.; Marinosci, A.; et al. Variability in Post-Discharge Mortality Rates and Predictors over Time: Data from a Five-Year Ward-Wide Study. J. Clin. Med. 2026, 15, 850. https://doi.org/10.3390/jcm15020850
Ramirez GA, Germinario BN, Benanti G, Caruso PF, Mette F, Pagliula G, Cariddi A, Sartorelli S, Falbo E, Marinosci A, et al. Variability in Post-Discharge Mortality Rates and Predictors over Time: Data from a Five-Year Ward-Wide Study. Journal of Clinical Medicine. 2026; 15(2):850. https://doi.org/10.3390/jcm15020850
Chicago/Turabian StyleRamirez, Giuseppe A., Bruno N. Germinario, Giovanni Benanti, Pier Francesco Caruso, Francesca Mette, Gaia Pagliula, Adriana Cariddi, Silvia Sartorelli, Elisabetta Falbo, Alessandro Marinosci, and et al. 2026. "Variability in Post-Discharge Mortality Rates and Predictors over Time: Data from a Five-Year Ward-Wide Study" Journal of Clinical Medicine 15, no. 2: 850. https://doi.org/10.3390/jcm15020850
APA StyleRamirez, G. A., Germinario, B. N., Benanti, G., Caruso, P. F., Mette, F., Pagliula, G., Cariddi, A., Sartorelli, S., Falbo, E., Marinosci, A., Farina, F., Pacioni, G., Rela, E., Barbieri, P., Tresoldi, M., & Bozzolo, E. P. (2026). Variability in Post-Discharge Mortality Rates and Predictors over Time: Data from a Five-Year Ward-Wide Study. Journal of Clinical Medicine, 15(2), 850. https://doi.org/10.3390/jcm15020850

