Effect of Altered Cervical Thread Pitch on the Primary Stability of Dental Implants
Abstract
1. Introduction
2. Materials and Methods
2.1. Polyurethane Blocks
2.2. Implants
2.3. Protocol and Stability Testing
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics and Normality Testing
3.2. High-Density Bone (D1)
3.3. Low-Density Bone (D3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fugazzotto, P.A. Treatment options following single-rooted tooth removal: A literature review and proposed hierarchy of treatment selection. J. Periodontol. 2005, 76, 821–831. [Google Scholar] [CrossRef]
- Fugazzotto, P.A. Success and failure rates of osseointegrated implants in function in regenerated bone for 72 to 133 months. Int. J. Oral Maxillofac. Implant. 2005, 20, 77–83. [Google Scholar]
- Goodacre, C.J.; Bernal, G.; Rungcharassaeng, K.; Kan, J.Y. Clinical complications with implants and implant prostheses. J. Prosthet. Dent. 2003, 90, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Goodacre, C.J.; Bernal, G.; Rungcharassaeng, K.; Kan, J.Y. Clinical complications in fixed prosthodontics. J. Prosthet. Dent. 2003, 90, 31–41. [Google Scholar] [CrossRef]
- Haas, R.; Mensdorff-Pouilly, N.; Mailath, G.; Watzek, G. Branemark single tooth implants: A preliminary report of 76 implants. J. Prosthet. Dent. 1995, 73, 274–279. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20, 172–184. [Google Scholar] [CrossRef]
- Feller, L.; Jadwat, Y.; Khammissa, R.A.; Meyerov, R.; Schechter, I.; Lemmer, J. Cellular responses evoked by different surface characteristics of intraosseous titanium implants. BioMed Res. Int. 2015, 2015, 171945. [Google Scholar] [CrossRef]
- Heitzer, M.; Kniha, K.; Katz, M.S.; Winnand, P.; Peters, F.; Mohlhenrich, S.C.; Holzle, F.; Modabber, A. The primary stability of two dental implant systems in low-density bone. Int. J. Oral Maxillofac. Surg. 2022, 51, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Antal, M.A.; Kiscsatári, R.; Braunitzer, G.; Piffkó, J.; Varga, E.; Eliaz, N. Assessment of a novel electrochemically deposited smart bioactive trabecular coating (SBTC®): A randomized controlled clinical trial. Head Face Med. 2024, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.S.; Namgung, C.; Lee, J.H.; Lim, Y.J. The influence of thread geometry on implant osseointegration under immediate loading: A literature review. J. Adv. Prosthodont. 2014, 6, 547–554. [Google Scholar] [CrossRef]
- Gil, F.J.; Aparicio, C.; Manero, J.M.; Padros, A. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants. Int. J. Oral Maxillofac. Implant. 2009, 24, 583–590. [Google Scholar]
- Al-Thobity, A.M.; Kutkut, A.; Almas, K. Microthreaded Implants and Crestal Bone Loss: A Systematic Review. J. Oral Implantol. 2017, 43, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Tumedei, M.; Di Pietro, N.; Romasco, T.; Piattelli, A.; Comuzzi, L. The Effect of Implant Thread’s Pitch on Primary Stability: An In Vitro Polyurethane Study with Under-Preparation and Low-Speed Drilling. Appl. Sci. 2025, 15, 11245. [Google Scholar] [CrossRef]
- do Vale Souza, J.P.; de Moraes Melo Neto, C.L.; Piacenza, L.T.; Freitas da Silva, E.V.; de Melo Moreno, A.L.; Penitente, P.A.; Brunetto, J.L.; Dos Santos, D.M.; Goiato, M.C. Relation Between Insertion Torque and Implant Stability Quotient: A Clinical Study. Eur. J. Dent. 2021, 15, 618–623. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Shiota, M.; Fujii, M.; Shimogishi, M.; Munakata, M. Effects of implant thread design on primary stability-a comparison between single- and double-threaded implants in an artificial bone model. Int. J. Implant. Dent. 2020, 6, 42. [Google Scholar] [CrossRef]
- Albrektsson, T.; Wennerberg, A. Oral implant surfaces: Part 1—Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J. Prosthodont. 2004, 17, 536–543. [Google Scholar]
- Al-Sabbagh, M.; Shaddox, L.M. Is Peri-Implantitis Curable? Dent. Clin. N. Am. 2019, 63, 547–566. [Google Scholar] [CrossRef]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Grobe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef]
- Stacchi, C.; Troiano, G.; Montaruli, G.; Mozzati, M.; Lamazza, L.; Antonelli, A.; Giudice, A.; Lombardi, T. Changes in implant stability using different site preparation techniques: Osseodensification drills versus piezoelectric surgery. A multi-center prospective randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 2023, 25, 133–140. [Google Scholar] [CrossRef]
- Tabassum, A.; Meijer, G.J.; Wolke, J.G.; Jansen, J.A. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: A laboratory study. Clin. Oral Implant. Res. 2010, 21, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Brizuela-Velasco, A.; Alvarez-Arenal, A.; Gil-Mur, F.J.; Herrero-Climent, M.; Chavarri-Prado, D.; Chento-Valiente, Y.; Dieguez-Pereira, M. Relationship Between Insertion Torque and Resonance Frequency Measurements, Performed by Resonance Frequency Analysis, in Micromobility of Dental Implants: An In Vitro Study. Implant Dent. 2015, 24, 607–611. [Google Scholar] [CrossRef]
- Meredith, N.; Alleyne, D.; Cawley, P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implant. Res. 1996, 7, 261–267. [Google Scholar] [CrossRef]
- Romero-Ruiz, M.M.; Gil-Mur, F.J.; Rios-Santos, J.V.; Lazaro-Calvo, P.; Rios-Carrasco, B.; Herrero-Climent, M. Influence of a Novel Surface of Bioactive Implants on Osseointegration: A Comparative and Histomorfometric Correlation and Implant Stability Study in Minipigs. Int. J. Mol. Sci. 2019, 20, 2307. [Google Scholar] [CrossRef]
- Monje, A.; Ravida, A.; Wang, H.L.; Helms, J.A.; Brunski, J.B. Relationship Between Primary/Mechanical and Secondary/Biological Implant Stability. Int. J. Oral Maxillofac. Implant. 2019, 34, s7–s23. [Google Scholar] [CrossRef]
- Cha, J.-Y.; Cha, J.-Y.; Pereira, M.; Smith, A.; Houschyar, K.; Yin, X.; Yin, X.; Mouraret, S.; Brunski, J.; Helms, J. Multiscale Analyses of the Bone-implant Interface. J. Dent. Res. 2015, 94, 482–490. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Perez, K.C.; Hyman, S.; Brunski, J.B.; Tulu, U.; Bao, C.; Salmon, B.; Helms, J.A. Effects of Condensation on Peri-implant Bone Density and Remodeling. J. Dent. Res. 2017, 96, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Wazen, R.M.; Currey, J.A.; Guo, H.; Brunski, J.B.; Helms, J.A.; Nanci, A. Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces. Acta Biomater. 2013, 9, 6663–6674. [Google Scholar] [CrossRef]
- Yuan, X.; Pei, X.; Zhao, Y.; Li, Z.; Chen, C.H.; Tulu, U.S.; Liu, B.; Van Brunt, L.A.; Brunski, J.B.; Helms, J.A. Biomechanics of Immediate Postextraction Implant Osseointegration. J. Dent. Res. 2018, 97, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Duyck, J.; Corpas, L.; Vermeiren, S.; Ogawa, T.; Quirynen, M.; Vandamme, K.; Jacobs, R.; Naert, I. Histological, histomorphometrical, and radiological evaluation of an experimental implant design with a high insertion torque. Clin. Oral Implant. Res. 2010, 21, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Barewal, R.M.; Oates, T.W.; Meredith, N.; Cochran, D.L. Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int. J. Oral Maxillofac. Implant. 2003, 18, 641–651. [Google Scholar]
- West, J.D.; Oates, T.W. Identification of stability changes for immediately placed dental implants. Int. J. Oral Maxillofac. Implant. 2007, 22, 623–630. [Google Scholar]
- Comuzzi, L.; Tumedei, M.; Romasco, T.; Petrini, M.; Afrashtehfar, K.I.; Inchingolo, F.; Piattelli, A.; Di Pietro, N. Insertion Torque, Removal Torque, and Resonance Frequency Analysis Values of Ultrashort, Short, and Standard Dental Implants: An In Vitro Study on Polyurethane Foam Sheets. J. Funct. Biomater. 2022, 14, 10. [Google Scholar] [CrossRef]
- Nagaraja, S.; Palepu, V. Comparisons of Anterior Plate Screw Pullout Strength Between Polyurethane Foams and Thoracolumbar Cadaveric Vertebrae. J. Biomech. Eng. 2016, 138, 104505. [Google Scholar] [CrossRef]
- Comuzzi, L.; Tumedei, M.; Di Pietro, N.; Romasco, T.; Hossein, H.H.S.; Montesani, L.; Inchingolo, F.; Piattelli, A.; Covani, U. A Comparison of Conical and Cylindrical Implants Inserted in an In Vitro Post-Extraction Model Using Low-Density Polyurethane Foam Blocks. Materials 2023, 16, 5064. [Google Scholar] [CrossRef]
- Misch, C.E. Density of bone: Effect on treatment plans, surgical approach, healing, and progressive boen loading. Int. J. Oral. Implantol. Implantol. 1990, 6, 23–31. [Google Scholar]
- Mello, B.F.; De Carvalho Formiga, M.; Bianchini, M.; Borges, I.; Coura, G.; Tumedei, M.; Fuller, R.; Petrini, M.; Romasco, T.; Vaz, P.; et al. Insertion Torque (IT) and Implant Stability Quotient (ISQ) Assessment in Dental Implants with and without Healing Chambers: A Polyurethane In Vitro Study. Appl. Sci. 2023, 13, 10215. [Google Scholar] [CrossRef]
- Comuzzi, L.; Tumedei, M.; Covani, U.; Romasco, T.; Petrini, M.; Montesani, L.; Piattelli, A.; Di Pietro, N. Primary Stability Assessment of Conical Implants in Under-Prepared Sites: An In Vitro Study in Low-Density Polyurethane Foams. Appl. Sci. 2023, 13, 6041. [Google Scholar] [CrossRef]
- Petrini, M.; Tumedei, M.; Cipollina, A.; D’Ercole, S.; Di Carmine, M.S.; Piattelli, A.; Re, M.; Iezzi, G. Fixture Length and Primary Stability: An In Vitro Study on Polyurethane Foam. Appl. Sci. 2022, 12, 2683. [Google Scholar] [CrossRef]
- Calvert, K.L.; Trumble, K.P.; Webster, T.J.; Kirkpatrick, L.A. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. J. Mater. Sci. Mater. Med. 2010, 21, 1453–1461. [Google Scholar] [CrossRef]
- Fernandes, M.; Fonseca, E.; Teixeira, T.; Natal Jorge, R. Dynamic Numerical Simulation of Different Drill Bit Diameter on the Polyurethane Foams Drilling. Matter Int. J. Sci. Technol. 2017, 3, 1–12. [Google Scholar] [CrossRef][Green Version]
- Ruppin, J.-M.; Stimmelmayr, M. High insertion torque versus regular insertion torque: Early crestal bone changes on dental implants in relation to primary stability—A retrospective clinical study. Int. J. Implant Dent. 2024, 10, 22. [Google Scholar] [CrossRef]
- Orhan, Z.D.; Ciğerim, L. Evaluation of Effect of Different Insertion Speeds and Torques on Implant Placement Condition and Removal Torque in Polyurethane Dense D1 Bone Model. Polymers 2024, 16, 1361. [Google Scholar] [CrossRef]
- Khayat, P.G.; Arnal, H.M.; Tourbah, B.I.; Sennerby, L. Clinical Outcome of Dental Implants Placed with High Insertion Torques (Up to 176° Ncm). Clin. Implant Dent. Relat. Res. 2013, 15, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Pammer, D. Calculating ISQ Primary Stability of a Dental Implant through Micromotion. Period. Polytech. Mech. Eng. 2020, 64, 43–50. [Google Scholar] [CrossRef]
- Truhlar, R.S.; Lauciello, F.; Morris, H.F.; Ochi, S. The influence of bone quality on Periotest values of endosseous dental implants at stage II surgery. J. Oral Maxillofac. Surg. 1997, 55, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Coulthard, P.; Thomsen, P.; Worthington, H.V. The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. Eur. J. Prosthodont. Restor. Dent. 2005, 13, 15–31. [Google Scholar]
- Tete, S.; Zizzari, V.; De Carlo, A.; Sinjari, B.; Gherlone, E. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation. Ann. Stomatol. 2012, 3, 44–50. [Google Scholar]
- Greenstein, G.; Cavallaro, J. Implant Insertion Torque: Its Role in Achieving Primary Stability of Restorable Dental Implants. Compend. Contin. Educ. Dent. 2017, 38, 88–95. [Google Scholar]
- Del Giudice, R.; Piattelli, A.; Grande, N.; Cataneo, E.; Crispino, A.; Petrini, M. Implant insertion torque value in immediate loading: A retrospective study. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e398–e403. [Google Scholar] [CrossRef]
- Baggi, L.; Cappelloni, I.; Di Girolamo, M.; Maceri, F.; Vairo, G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J. Prosthet. Dent. 2008, 100, 422–431. [Google Scholar] [CrossRef]
- Boggan, R.S.; Strong, J.T.; Misch, C.E.; Bidez, M.W. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J. Prosthet. Dent. 1999, 82, 436–440. [Google Scholar] [CrossRef]
- Kim, D.R.; Lim, Y.J.; Kim, M.J.; Kwon, H.B.; Kim, S.H. Self-cutting blades and their influence on primary stability of tapered dental implants in a simulated low-density bone model: A laboratory study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 573–580. [Google Scholar] [CrossRef]
- Misch, C.E. Guidelines for maxillary incisal edge position-a pilot study: The key is the canine. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2008, 17, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E.; Misch-Dietsh, F.; Silc, J.; Barboza, E.; Cianciola, L.J.; Kazor, C. Posterior implant single-tooth replacement and status of adjacent teeth during a 10-year period: A retrospective report. J. Periodontol. 2008, 79, 2378–2382. [Google Scholar] [CrossRef] [PubMed]
- Misch, K.; Wang, H.L. Implant surgery complications: Etiology and treatment. Implant Dent. 2008, 17, 159–168. [Google Scholar] [CrossRef]
- Niroomand, M.; Arabbeiki, M.; Rouhi, G. Optimization of thread configuration in dental implants through regulating the mechanical stimuli in neighboring bone. Comput. Methods Programs Biomed. 2023, 231, 107376. [Google Scholar] [CrossRef]
- Arabbeiki, M.; Niroomand, M.; Rouhi, G. Improving dental implant stability by optimizing thread design: Simultaneous application of finite element method and data mining approach. J. Prosthet. Dent. 2023, 130, 602.e1–602.e11. [Google Scholar] [CrossRef]
- Nascimento, L.R.X.C.; Torelly, G.; Elias, C. Measurement of bone deformation and insertion torque during dental implant installation. Oral. Maxillofac. Surg. 2024, 29, 19. [Google Scholar] [CrossRef] [PubMed]
- Dodo, C.; Senna, P.; Del Bel Cury, A.; Meirelles, L. Impact of High Insertion Torque on Implant Surface Integrity. Clin. Implant Dent. Relat. Res. 2025, 27, e70030. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.A.F.; Faot, F.; Possebon, A.; Da Silva, W.; Del Bel Cury, A. Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. J. Mech. Behav. Biomed. Mater. 2021, 119, 104515. [Google Scholar] [CrossRef]
- Norton, M. The Influence of Low Insertion Torque on Primary Stability, Implant Survival, and Maintenance of Marginal Bone Levels: A Closed-Cohort Prospective Study. Int. J. Oral Maxillofac. Implant. 2017, 32, 849–857. [Google Scholar] [CrossRef]
- Aguilera, V.R.; Apaza-Bedoya, K.; De Souza Pereira, B.; Benfatti, C. Clinical study with short implants—Relation among insertion torque, osseointegration and bone loss. Clin. Oral Implant. Res. 2019, 30, 457. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.-Q.; Zheng, Q. Meta-Analysis of Correlations Between Marginal Bone Resorption and High Insertion Torque of Dental Implants. Int. J. Oral Maxillofac. Implant. 2015, 30, 767–772. [Google Scholar] [CrossRef][Green Version]
- Bidgoli, M.; Soheilifar, S.; Faradmal, J.; Soheilifar, S. High Insertion Torque and Peri-Implant Bone Loss: Is There a Relationship? J. Long-Term Eff. Med. Implant. 2015, 25, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.; Júnior, J.A.; Treichel, T.L.E.; Prado, T.D.; Dedavid, B.; Aza, P. Effects of insertion torque values on the marginal bone loss of dental implants installed in sheep mandibles. Sci. Rep. 2022, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Marconcini, S.; Giammarinaro, E.; Toti, P.; Alfonsi, F.; Covani, U.; Barone, A. Longitudinal analysis on the effect of insertion torque on delayed single implants: A 3-year randomized clinical study. Clin. Implant Dent. Relat. Res. 2018, 20, 322. [Google Scholar] [CrossRef]
- Oskouei, A.B.; Golkar, M.; Badkoobeh, A.; Jahri, M.; Sadeghi, H.; MohammadiKhah, M.; Abbasi, K.; Tabrizi, R.; Alam, M. Investigating the effect of insertion Torque on marginal bone loss around dental implants. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101523. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.; Pereira, G.M.A.; Gehrke, A.F.; De Bortoli Júnior, N.; Dedavid, B. Effects of insertion torque on the structure of dental implants with different connections: Experimental pilot study in vitro. PLoS ONE 2021, 16, e0251904. [Google Scholar] [CrossRef]
- Ostman, P.-O.; Hellman, M.; Sennerby, L. Direct implant loading in the edentulous maxilla using a bone density-adapted surgical protocol and primary implant stability criteria for inclusion. Clin. Implant Dent. Relat. Res. 2005, 7, s60–s69. [Google Scholar] [CrossRef]
- Bavetta, G.; Bavetta, G.; Randazzo, V.; Cavataio, A.; Paderni, C.; Grassia, V.; Dipalma, G.; Isacco, G.; Scarano, A.; De Vito, D.; et al. A Retrospective Study on Insertion Torque and Implant Stability Quotient (ISQ) as Stability Parameters for Immediate Loading of Implants in Fresh Extraction Sockets. BioMed Res. Int. 2019, 2019, 9720419. [Google Scholar] [CrossRef]



| D1—Group 1 | D1—Group 2 | |||||||||
| Mean | Median | SD | Min | Max | Mean | Median | SD | Min | Max | |
| Torque | 66 | 63.5 | 7.86 | 54 | 80 | 74.2 | 74 | 5.24 | 63 | 80 |
| ISQ BL | 77.2 | 79 | 4.34 | 62 | 80 | 78.9 | 80 | 2.87 | 70 | 81 |
| ISQ MD | 77.6 | 79 | 3.82 | 62 | 80 | 79.3 | 80 | 2.02 | 74 | 81 |
| ISQ Mean | 77.4 | 79 | 3.8 | 66 | 80 | 79.1 | 80 | 2.34 | 72 | 81 |
| D3—Group 1 | D3—Group 2 | |||||||||
| Mean | Median | SD | Min | Max | Mean | Median | SD | Min | Max | |
| Torque | 31.9 | 33 | 4.35 | 12 | 38 | 37.6 | 37.5 | 2.65 | 33 | 44 |
| ISQ BL | 66.4 | 67 | 1.61 | 63 | 69 | 65.9 | 66 | 1.82 | 62 | 68 |
| ISQ MD | 66.4 | 66.5 | 1.71 | 61 | 69 | 66 | 66 | 1.73 | 62 | 68 |
| ISQ Mean | 66.4 | 66.5 | 1.53 | 63.5 | 69 | 66 | 66 | 1.76 | 62 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Major, L.; Barrak, I.; Braunitzer, G.; Piffkó, J.; Antal, M.A. Effect of Altered Cervical Thread Pitch on the Primary Stability of Dental Implants. J. Clin. Med. 2026, 15, 864. https://doi.org/10.3390/jcm15020864
Major L, Barrak I, Braunitzer G, Piffkó J, Antal MA. Effect of Altered Cervical Thread Pitch on the Primary Stability of Dental Implants. Journal of Clinical Medicine. 2026; 15(2):864. https://doi.org/10.3390/jcm15020864
Chicago/Turabian StyleMajor, Lászlo, Ibrahim Barrak, Gábor Braunitzer, József Piffkó, and Mark Adam Antal. 2026. "Effect of Altered Cervical Thread Pitch on the Primary Stability of Dental Implants" Journal of Clinical Medicine 15, no. 2: 864. https://doi.org/10.3390/jcm15020864
APA StyleMajor, L., Barrak, I., Braunitzer, G., Piffkó, J., & Antal, M. A. (2026). Effect of Altered Cervical Thread Pitch on the Primary Stability of Dental Implants. Journal of Clinical Medicine, 15(2), 864. https://doi.org/10.3390/jcm15020864

