The Aortic Flow Reversal Ratio: A Quantitative Adjunct to the Bicêtre Score in Vein of Galen Malformation
Abstract
1. Introduction
2. Materials and Methods
- A confirmed diagnosis of VGAM based on imaging evidence.
- A documented Bicêtre Neonatal Evaluation Score of greater than 12 at the time of initial assessment.
- At least one EE procedure performed during the study period.
- Availability of complete pre- and post-intervention TTE datasets.
- A simple linear regression to assess the relationship between the pre-intervention AoFRr and the Bicêtre score, with the coefficient of determination (R2) reported to quantify the correlation.
- An assessment of the association between the reduction in flow and the number of subsequent interventions using two methods. First, we calculated Spearman’s rank correlation to measure the relationship between the ranked absolute flow reduction (AFR) and the total number of re-interventions. Second, we dichotomized the percentage drop in AoFRr using an 85% reduction as a cutoff and used a Chi-square test of independence to determine its association with the likelihood of requiring any re-intervention.
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Baseline Echocardiogram Findings and Correlation with Bicêtre Scores
3.3. Hemodynamic Impact of Endovascular Intervention
4. Discussion
- Determining Procedural Success: For the interventionalist, the change in AoFRr offers immediate, objective feedback on the hemodynamic success of an embolization. It redefines procedural success, shifting the focus from simple anatomical occlusion to quantifiable physiological improvement. Achieving a near-complete reduction in the AoFRr (e.g., ≥85% as identified in our analysis) could serve as a novel therapeutic endpoint for the initial procedure. However, this target must be pursued with caution. Rapidly eliminating a high-flow shunt carries the risk of Normal Perfusion Pressure Breakthrough, where the sudden restoration of perfusion pressure can increase the risk of hemorrhagic complications. Thus, while a reduction of ≥85% predicts a favorable course regarding re-intervention, the interventionalist must balance this efficacy against the safety profile of staged embolization.
- Prognostication and Family Counseling: For both the clinical team and the patient’s family, the magnitude of the post-procedural drop in AoFRr is a powerful prognostic tool. It allows for more informed counseling regarding the expected clinical course. A large reduction can provide reassurance and potentially suggest a lower likelihood of requiring further interventions, whereas a minimal reduction can help set expectations that, despite a technically successful procedure, further EE will likely be necessary.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFR | Absolute Flow Reduction |
| AoFRr | Aortic Flow Reversal Ratio |
| EE | Endovascular Embolization |
| PDA | Patent Ductus Arteriosus |
| TAMAX | Time-Averaged Maximum Velocity |
| TTE | Transthoracic Echocardiography |
| VGAM | Vein of Galen Aneurysmal Malformation |
| VTI | Velocity Time Integral |
References
- Devarajan, A.; Goldman, D.; Shigematsu, T.; Berenstein, A.; Fifi, T.J. Vein of Galen malformations. Neurosurg. Clin. N. Am. 2024, 35, 363–374. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Rennie, A.; Robertson, F. Neurovascular malformations in the fetus and neonate. Neuroimaging Clin. N. Am. 2024, 34, 531–543. [Google Scholar] [CrossRef]
- Udine, M.; Croci, D.; Wasserman, J.; Noureldine, A.H.M.; Monsour, M.; Vakharia, K.; Agazzi, S. Vein of Galen malformations in adults. Clin. Neurol. Neurosurg. 2023, 228, 107671. [Google Scholar] [CrossRef]
- Lasjaunias, L.P.; Chng, M.S.; Sachet, M.; Alvarez, H.; Rodesch, G.; Garcia-Monaco, R. The management of vein of Galen aneurysmal malformations. Neurosurgery 2006, 59, S3-184–S3-194. [Google Scholar] [CrossRef]
- Madhuban, A.; Heuvel, D.V.F.; Stuijvenberg, V.M. Vein of Galen aneurysmal malformation in neonates presenting with congestive heart failure. Child Neurol. Open 2016, 3, 2329048X1562470. [Google Scholar] [CrossRef]
- Jhaveri, S.; Berenstein, A.; Srivastava, S.; Shigematsu, T.; Geiger, K.M. High output cardiovascular physiology and outcomes in fetal diagnosis of vein of Galen malformation. Pediatr. Cardiol. 2021, 42, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Hoda, M.; Lemler, M.; Cory, M. Vein of Galen aneurysmal malformation with anomalous right superior vena cava to the left atrium leading to atypical clinical and echocardiographic findings. Pediatr. Cardiol. 2023, 44, 254–259. [Google Scholar] [CrossRef]
- Karim, S.; Jain, S.; Martinez, L.M.; Chen, K. Intracranial vascular malformations in children. Neuroimaging Clin. N. Am. 2024, 34, 545–565. [Google Scholar] [CrossRef]
- Cordova, G.E.; Levy, P.; Kheir, N.J.; Orbach, B.D.; Barnewolt, C.; Estroff, A.J. Vein of Galen malformation. NeoReviews 2020, 21, e678–e686. [Google Scholar] [CrossRef]
- Cory, J.M.; Durand, P.; Sillero, R.; Morin, L.; Savani, R.; Chalak, L.; Angelis, D. Vein of Galen aneurysmal malformation: Rationalizing medical management of neonatal heart failure. Pediatr. Res. 2023, 93, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Khurana, J.; Orbach, B.D.; Gauvreau, K.; Collins, L.S.; Tella, B.J.; Agrawal, B.P.; Christou, A.H.; Mullen, P.M. Pulmonary hypertension in infants and children with vein of Galen malformation and association with clinical outcomes. J. Pediatr. 2023, 258, 113404. [Google Scholar] [CrossRef]
- Bhattarai, K.; Patel, M.; Garcia, M.; Litra, F. Vein of Galen aneurysmal malformation: A case report and literature review. Cureus 2023, 15, e51305. [Google Scholar] [CrossRef]
- Elavia, Z.; Raj, R.; Tariq, M.; Saad, M.; Yadav, P.; Hooti, A.J.; Makky, H. Intracranial vein of Galen malformation and its management: A case report. Med. Int. 2024, 4, 63. [Google Scholar] [CrossRef]
- Rosa, D.G.; Carolis, D.M.; Tempera, A.; Pedicelli, A.; Rollo, M.; Luca, E.; Luca, D.D.; Conti, G.; Piastra, M.; Morena, T. Outcome of neonates with vein of Galen malformation presenting with severe heart failure: A case series. Am. J. Perinatol. 2019, 36, 169–175. [Google Scholar] [CrossRef]
- Paladini, D.; Deloison, B.; Rossi, A.; Chalouhi, E.G.; Gandolfo, C.; Sonigo, P.; Buratti, S.; Millischer, E.A.; Tuo, G.; Ville, Y.; et al. Vein of Galen aneurysmal malformation (VGAM) in the fetus: Retrospective analysis of perinatal prognostic indicators in a two-center series of 49 cases. Ultrasound Obstet. Gynecol. 2017, 50, 192–199. [Google Scholar] [CrossRef]
- Berenstein, A.; Ortiz, R.; Niimi, Y.; Elijovich, L.; Fifi, J.; Madrid, M.; Ghatan, S.; Molofsky, W. Endovascular management of arteriovenous malformations and other intracranial arteriovenous shunts in neonates, infants, and children. Child’s Nerv. Syst. 2010, 26, 1345–1358. [Google Scholar] [CrossRef]
- Aydin, S.; Darko, K.; Detchou, D.; Barrie, U. Vein of Galen malformations: For patients and caregivers. Neurosurg. Rev. 2024, 47, 587. [Google Scholar] [CrossRef]
- Fuentes-Redondo, T.; Navia-Álvarez, P.; Arráez-Aybar, L.A. Vein of Galen aneurysmal malformations: Updates on technical aspects and functional outcomes post-endovascular treatment—A systematic review and meta-analysis. Medicina 2024, 60, 1948. [Google Scholar] [CrossRef]
- Elijovich, L.; Choudhri, A.F.; Arthur, A.S.; Klimo, P.; Boop, F.A.; Berenstein, A. Retreatment of a choroidal vein of Galen malformation with embolization 42 years after open surgical treatment in the neonatal period. BMJ Case Rep. 2016, 2016, bcr-2016-012709. [Google Scholar] [CrossRef]
- Nuñez, B.F.; Dohna-Schwake, C. Epidemiology, diagnostics, and management of vein of Galen malformation. Pediatr. Neurol. 2021, 119, 50–55. [Google Scholar] [CrossRef]
- Brinjikji, W.; Krings, T.; Murad, M.H.; Rouchaud, A.; Meila, D. Endovascular treatment of vein of Galen malformations: A systematic review and meta-analysis. Am. J. Neuroradiol. 2017, 38, 2308–2314. [Google Scholar] [CrossRef]
- Lam, S.; Hansen, D.; Kan, P.; Reddy, G.; Mohan, A.; Jea, A. Pediatric knowledge update: Approach to the management of vein of Galen aneurysmal malformations in neonates. Surg. Neurol. Int. 2016, 7, 317. [Google Scholar] [CrossRef]
- Mcsweeney, N.; Brew, S.; Bhate, S.; Cox, T.; Roebuck, J.D.; Ganesan, V. Management and outcome of vein of Galen malformation. Arch. Dis. Child. 2010, 95, 903–909. [Google Scholar] [CrossRef]
- Buratti, S.; Mallamaci, M.; Tuo, G.; Severino, M.; Tortora, D.; Parodi, C.; Rossi, A.; Pasetti, F.; Castellan, L.; Capra, V.; et al. Vein of Galen aneurysmal malformation in newborns: A retrospective study to describe a paradigm of treatment and identify risk factors of adverse outcome in a referral center. Front. Pediatr. 2023, 11, 1193738. [Google Scholar] [CrossRef]
- Doctor, P.; Ramaciotti, C.; Angelis, D.; Cory, M. Echocardiography evaluation of neonatal vein of Galen aneurysmal malformation. Cardiol. Young 2024, 34, 759–764. [Google Scholar] [CrossRef]
- Giesinger, E.R.; Elsayed, N.Y.; Castaldo, P.M.; Mcnamara, J.P. Targeted neonatal echocardiography-guided therapy in vein of Galen aneurysmal malformation: A report of two cases with a review of physiology and approach to management. Am. J. Perinatol. Rep. 2019, 09, e172–e176. [Google Scholar] [CrossRef]
- Gowda, S.; Philip, R.; Weems, M. Obstacles to the early diagnosis and management of patent ductus arteriosus. Res. Rep. Neonatol. 2024, 14, 43–57. [Google Scholar] [CrossRef]
- Parkerson, S.; Philip, R.; Talati, A.; Sathanandam, S. Management of patent ductus arteriosus in premature infants in 2020. Front. Pediatr. 2020, 8, 590578. [Google Scholar] [CrossRef]
- de Freitas Martins, F.; Ibarra Rios, D.; MH, F.R.; Javed, H.; Weisz, D.; Jain, A.; de Andrade Lopes, J.M.; McNamara, P.J. Relationship of patent ductus arteriosus size to echocardiographic markers of shunt volume. J. Pediatr. 2018, 202, 50–55.e3. [Google Scholar] [CrossRef]
- Hsu, K.H.; Nguyen, J.; Dekom, S.; Ramanathan, R.; Noori, S. Effects of patent ductus arteriosus on organ blood flow in infants born very preterm: A prospective study with serial echocardiography. J. Pediatr. 2020, 216, 95–100.e2. [Google Scholar] [CrossRef]
- Paudel, G.; Joshi, V. Echocardiography of the patent ductus arteriosus in premature infant. Congenit. Heart Dis. 2019, 14, 42–45. [Google Scholar] [CrossRef]
- Schwarz, S.; Nuñez, B.F.; Dürr, R.N.; Schlunz-Hendann, M.; Brassel, F.; Felderhoff-Müser, U.; Dohna-Schwake, C.; Bruns, N. Aortic steal correlates with acute organ dysfunction and short-term outcomes in neonates with vein of Galen malformation. Neonatology 2024, 121, 106–115. [Google Scholar] [CrossRef]
- Ambalavanan, N.; Aucott, S.W.; Salavitabar, A.; Levy, V.Y.; Committee on Fetus and Newborn; Section on Cardiology and Cardiac Surgery. Patent ductus arteriosus in preterm infants. Pediatrics 2025, 155, e2025071425. [Google Scholar] [CrossRef]
- Mcguire, S.L.; Nikas, D. Vein of Galen malformation. N. Engl. J. Med. 2020, 383, e90. [Google Scholar] [CrossRef]
- Smith, A.; Abruzzo, T.; Mahmoud, M. Vein of Galen malformation and high-output cardiac failure. Anesthesiology 2016, 125, 597. [Google Scholar] [CrossRef]
- Relan, J.; Gupta, K.S.; Saxena, A. Right superior caval vein to the left atrium in a child with vein of Galen malformation. Echocardiography 2018, 35, 1868–1871. [Google Scholar] [CrossRef]
- Schwarz, S.; Nuñez, B.F.; Dürr, N.R.; Brassel, F.; Schlunz-Hendann, M.; Feldkamp, A.; Rosenbaum, T.; Felderhoff-Müser, U.; Schulz, K.; Dohna-Schwake, C.; et al. Doppler ultrasound flow reversal in the superior sagittal sinus to detect cerebral venous congestion in vein of Galen malformation. Am. J. Neuroradiol. 2023, 44, 707–715. [Google Scholar] [CrossRef]
- Blanco, P. Rationale for using the velocity-time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J. 2020, 12, 21. [Google Scholar] [CrossRef]
- Riccardi, M.; Cani, D.S.; Pagnesi, M.; Lombardi, C.M.; Metra, M.; Inciardi, R.M. Assessing aortic flow with doppler echocardiography in cardiogenic shock: A crucial diagnostic tool. Echocardiography 2024, 41, e15901. [Google Scholar] [CrossRef]
- Diaz, A.; Zocalo, Y.; Cabrera-Fischer, E.; Bia, D. Reference intervals and percentile curve for left ventricular outflow tract (LVOT), velocity time integral (VTI), and LVOT-VTI-derived hemodynamic parameters in healthy children and adolescents: Analysis of echocardiographic methods association and agreement. Echocardiography 2018, 35, 2014–2034. [Google Scholar] [CrossRef]
- Schwarz, S.; Brevis Nuñez, F.; Dürr, N.R.; Schulz, K.; Brassel, F.; Schlunz-Hendann, M.; Scholz, M.; Felderhoff-Müser, U.; Dohna-Schwake, C.; Bruns, N. Association of disease severity and cerebral interventional complications with long-term neurodevelopmental outcome in neonates with vein of Galen malformation. Pediatr. Neurol. 2025, 169, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Broadhouse, K.M.; Price, A.N.; Durighel, G.; Cox, D.J.; Finnemore, A.E.; Edwards, A.D.; Hajnal, J.V.; Groves, A.M. Assessment of PDA shunt and systemic blood flow in newborns using cardiac mri. NMR Biomed. 2013, 26, 1135–1141. [Google Scholar] [CrossRef] [PubMed]


| Demographics | |
|---|---|
| Age at Initial Intervention (Months) | 3.7 (0.3–39.5) |
| Weight at Initial Intervention (kg) | 3.4 (3.0–6.2) |
| Height at Initial Intervention (cm) | 51.5 (50.0–54.0) |
| Number of Interventions: total, median (IQR) | 30, 2 (1.8–3.0) |
| Number of Echocardiograms: total, median (IQR) | 49, 5 (3–8) |
| Male: n (%) | 7 (58.3%) |
| Data above are Median (Interquartile Range) unless otherwise specified | |
| ID | Sex (F/M) | Age | # of Interventions | Bicêtre Score Components | Total Bicêtre Score | AoFRr | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Cardiac | Cerebral | Respiratory | Hepatic | Renal | Pre-Intervention | Post-Intervention | |||||
| 1 | M | 64 m | 1 | 5 | 5 | 5 | 3 | 3 | 21 | 0.82 | 0.65 |
| 2 | F | 28 m | 5 | 5 | 2 | 5 | 3 | 3 | 18 | 0.92 | 0.00 |
| 3 | M | 1 d | 2 | 1 | 5 | 1 | 3 | 3 | 13 | 1.04 | 0.66 |
| 4 | F | 4 m | 2 | 5 | 5 | 5 | 2 | 3 | 20 | 0.48 | 0.51 |
| 5 | F | 19 d | 1 | 1 | 5 | 5 | 3 | 3 | 17 | 0.49 | 0.00 |
| 6 | M | 11 d | 3 | 3 | 5 | 5 | 3 | 2 | 18 | 0.81 | 0.51 |
| 7 | M | 2 d | 3 | 3 | 5 | 1 | 2 | 3 | 14 | 1.20 | 0.60 |
| 8 | M | 1 d | 5 | 1 | 5 | 1 | 3 | 3 | 13 | 0.93 | 0.56 |
| 9 | M | * | 2 | 5 | 5 | 5 | 3 | 3 | 21 | 0.00 | 0.00 |
| 10 | M | * | 3 | 5 | 0 | 5 | 3 | 3 | 16 | 0.86 | 0.00 |
| 11 | F | 32 m | 2 | 5 | 5 | 3 | 3 | 3 | 19 | 0.00 | 0.00 |
| 12 | F | 4 m | 1 | 5 | 5 | 4 | 3 | 3 | 20 | 0.14 | 0.32 |
| Results | |
|---|---|
| Percentage of patients with reversal of flow | 83.3% |
| Pre-intervention AoFRr: Median (IQR) | 0.81 (0.49–1.05) |
| Correlation of Pre-intervention AoFRr with Bicêtre Score: R-Squared | 0.4546 |
| Percentage decrease in degree of AoFRr after intervention: Mean (p-value) | 52.80% (0.0232 *) |
| Absolute Flow Reduction (AFR) vs. Number of Re-interventions: (ρ) | ≈−0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rimler, M.; Philip, R.; Tanner, L.; Huth, H.; Elijovich, L. The Aortic Flow Reversal Ratio: A Quantitative Adjunct to the Bicêtre Score in Vein of Galen Malformation. J. Clin. Med. 2026, 15, 748. https://doi.org/10.3390/jcm15020748
Rimler M, Philip R, Tanner L, Huth H, Elijovich L. The Aortic Flow Reversal Ratio: A Quantitative Adjunct to the Bicêtre Score in Vein of Galen Malformation. Journal of Clinical Medicine. 2026; 15(2):748. https://doi.org/10.3390/jcm15020748
Chicago/Turabian StyleRimler, Menachem, Ranjit Philip, Lydia Tanner, Hannah Huth, and Lucas Elijovich. 2026. "The Aortic Flow Reversal Ratio: A Quantitative Adjunct to the Bicêtre Score in Vein of Galen Malformation" Journal of Clinical Medicine 15, no. 2: 748. https://doi.org/10.3390/jcm15020748
APA StyleRimler, M., Philip, R., Tanner, L., Huth, H., & Elijovich, L. (2026). The Aortic Flow Reversal Ratio: A Quantitative Adjunct to the Bicêtre Score in Vein of Galen Malformation. Journal of Clinical Medicine, 15(2), 748. https://doi.org/10.3390/jcm15020748

