Use of FibroScan-AST (FAST) Score and Fibrosis-4 Index to Identify Advanced Liver Fibrosis in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Characteristics of the Study Participants and Procedures
2.3. FAST Score Risk Stratification
2.4. FIB-4 Index Risk Stratification
2.5. Comparison of FAST Scores and the FIB-4 Index
- F ≥ 2: LSM ≥ 8.2 kPa
- F ≥ 3: LSM ≥ 9.7 kPa
2.6. Data Analysis
Ethics Approval
3. Results
3.1. Baseline Patient Characteristics
3.2. Comparison Between the FAST Score, LSM, and FIB-4 Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, W.; Petta, S.; Noureddin, M.; Goh, G.B.B.; Wong, V.W. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment. Pharmacol. Ther. 2024, 59, S23–S40. [Google Scholar] [CrossRef] [PubMed]
- Asero, C.; Giandalia, A.; Cacciola, I.; Morace, C.; Lorello, G.; Caspanello, A.R.; Alibrandi, A.; Squadrito, G.; Russo, G.T. High Prevalence of Severe Hepatic Fibrosis in Type 2 Diabetic Outpatients Screened for Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2023, 12, 2858. [Google Scholar] [CrossRef] [PubMed]
- Gastaldelli, A.; Cusi, K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019, 1, 312–328. [Google Scholar] [CrossRef]
- Cho, E.E.L.; Ang, C.Z.; Quek, J.; Fu, C.E.; Lim, L.K.E.; Heng, Z.E.Q.; Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Zeng, R.; et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: An updated systematic review and meta-analysis. Gut 2023, 72, 2138–2148. [Google Scholar] [CrossRef] [PubMed]
- Jarrar, M.; Abusalah, M.A.H.; Albaker, W.; Al-Bsheish, M.; Alsyouf, A.; Al-Mugheed, K.; Issa, M.R.; Alumran, A. Prevalence of type 2 diabetes mellitus in the general population of Saudi Arabia, 2000–2020: A systematic review and meta-analysis of observational studies: A systematic review and meta-analysis of observational studies. Saudi J. Med. Med. Sci. 2023, 11, 1–10. [Google Scholar] [CrossRef]
- Al-Omar, H.A.; Alshehri, A.; Alqahtani, S.A.; Alabdulkarim, H.; Alrumaih, A.; Eldin, M.S. A systematic review of obesity burden in Saudi Arabia: Prevalence and associated comorbidities. Saudi Pharm. J. 2024, 32, 102192. [Google Scholar] [CrossRef]
- Sanai, F.M.; Al Khathlan, A.; Al Fadhli, A.; Jazzar, A.S.; Hashim, A.M.; Mansour, E.; Abaalkhail, F.; Hasan, F.; Al Mudaiheem, H.; Al Quraishi, H.; et al. Clinical and economic burden of nonalcoholic steatohepatitis in Saudi Arabia, United Arab Emirates and Kuwait. Hepatol. Int. 2021, 15, 912–921. [Google Scholar] [CrossRef]
- Ciardullo, S.; Muraca, E.; Perra, S.; Bianconi, E.; Zerbini, F.; Oltolini, A.; Cannistraci, R.; Parmeggiani, P.; Manzoni, G.; Gastaldelli, A.; et al. Screening for non-alcoholic fatty liver disease in type 2 diabetes using noninvasive scores and association with diabetic complications. BMJ Open Diabetes Res. Care 2020, 8, e000904. [Google Scholar] [CrossRef]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.-M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef]
- Ismail, M.H.; Al Argan, R.; Elamin, Y.; Makki, M.; Alsheekh, L.; Alelyani, J.; Hadhiah, Z.; Aljidhr, Z.; Alkhatam, N.; Alfaddagh, H.; et al. Automated Fibrosis-4 Index: Simplifying Non-Alcoholic Fatty Liver Disease for Diabetologists. Medicina 2024, 60, 1278. [Google Scholar] [CrossRef]
- American Diabetes Association. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43, S37–S47. [Google Scholar] [CrossRef]
- Kanwal, F.; Neuschwander-Tetri, B.A.; Loomba, R.; Rinella, M.E. Metabolic dysfunction–associated steatotic liver disease: Update and impact of new nomenclature on the American Association for the Study of Liver Diseases practice guidance on nonalcoholic fatty liver disease. Hepatology 2024, 79, 1212–1219. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542.
- Newsome, P.N.; Sasso, M.; Deeks, J.J.; Paredes, A.; Boursier, J.; Chan, W.-K.; Yilmaz, Y.; Czernichow, S.; Zheng, M.-H.; Wong, V.W.-S.; et al. FibroScan-AST (FAST) score for the noninvasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: A prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 2020, 5, 362–373. [Google Scholar] [CrossRef]
- Kim, R.G.; Deng, J.; Reaso, J.N.; Grenert, J.P.; Khalili, M. Noninvasive Fibrosis Screening in Fatty Liver Disease Among Vulnerable Populations: Impact of Diabetes and Obesity on FIB-4 Score Accuracy. Diabetes Care 2022, 45, 2449–2451. [Google Scholar] [CrossRef] [PubMed]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Karlas, T.; Petroff, D.; Sasso, M.; Fan, J.-G.; Mi, Y.-Q.; de Lédinghen, V.; Kumar, M.; Lupsor-Platon, M.; Han, K.-H.; Cardoso, A.C.; et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J. Hepatol. 2017, 66, 1022–1030. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Hardy, T.; Dufour, J.-F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Noninvasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.-Y.; Yang, T.-Y.; Yang, B.-Q.; Hou, C.-X.; Li, J.-N.; Li, Y.; Wang, Q. FibroScan-aspartate transaminase: A superior noninvasive model for diagnosing high-risk metabolic dysfunction-associated steatohepatitis. World J. Gastroenterol. 2024, 30, 2440–2453. [Google Scholar] [CrossRef]
- Castera, L.; Laouenan, C.; Vallet-Pichard, A.; Vidal-Trécan, T.; Manchon, P.; Paradis, V.; Roulot, D.; Gault, N.; Boitard, C.; Terris, B.; et al. High Prevalence of NASH and Advanced Fibrosis in Type 2 Diabetes: A Prospective Study of 330 Outpatients Undergoing Liver Biopsies for Elevated ALT, Using a Low Threshold. Diabetes Care 2023, 46, 1354–1362. [Google Scholar] [CrossRef]
- Castera, L.; Garteiser, P.; Laouenan, C.; Vidal-Trécan, T.; Vallet-Pichard, A.; Manchon, P.; Paradis, V.; Czernichow, S.; Roulot, D.; Larger, E.; et al. Prospective head-to-head comparison of noninvasive scores for diagnosis of fibrotic MASH in patients with type 2 diabetes. J. Hepatol. 2024, 81, 195–206. [Google Scholar] [CrossRef]
- Woreta, T.A.; Van Natta, M.L.; Lazo, M.; Krishnan, A.; Neuschwander-Tetri, B.A.; Loomba, R.; Diehl, A.M.; Abdelmalek, M.F.; Chalasani, N.; Gawrieh, S.; et al. Validation of the accuracy of the FAST™ score for detecting patients with at-risk nonalcoholic steatohepatitis (NASH) in a North American cohort and comparison to other noninvasive algorithms. PLoS ONE 2022, 17, e0266859. [Google Scholar] [CrossRef] [PubMed]
- Canivet, C.M.; Ongaro, M.; Conquet, N.; Spahr, L.; Goossens, N. Validation of the American Association for the Study of Liver Disease/European Association for the Study of the Liver Multistep Screening Strategies for Metabolic Dysfunction-associated Steatotic Liver disease. Gastro Hep Adv. 2025, 4, 100747. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Toyoda, H.; Sone, Y.; Yasuda, S.; Miyake, N.; Kumada, T.; Tanaka, J. Type 2 diabetes mellitus: A risk factor for progression of liver fibrosis in middle-aged patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2019, 34, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, A.A.; Sherbeeni, S.M.; Alqutub, A.N.; Aldosary, A.S.; Aldaghri, N.M.; Taylor-Robinson, S.D.; Gul, R.; Almaghamsi, A.M. Transient elas-tography for the prevalence of non-alcoholic fatty liver disease in patients with type 2 diabetes: Evidence from the CORDIAL cohort study: Evidence from the CORDIAL cohort study. Saudi J. Gastroenterol. 2022, 28, 426–433. [Google Scholar] [CrossRef]



| Total (N = 273) | High Risk FAST Score (>0.35) | ||
|---|---|---|---|
| Yes (N = 72) | No (N = 201) | ||
| Sex | |||
| Male | 123 (45.1%) | 38 (30.9%) | 85 (69.1%) |
| Female | 150 (54.9%) | 34 (22.7%) | 116 (77.3%) |
| Age | |||
| Mean ± SD * | 52.9 ± 12.8 | 51.1 ± 12.8 | 53.6 ± 12.7 |
| Age group | |||
| <50 | 101 (37.0%) | 31 (30.7%) | 70 (69.3%) |
| 50–60 | 93 (34.1%) | 20 (21.5%) | 73 (78.5%) |
| >60 | 79 (28.9%) | 21 (26.6%) | 58 (73.4%) |
| Nationality | |||
| Saudi | 235 (86.1%) | 66 (28.1%) | 169 (71.9%) |
| Non-Saudi | 38 (13.9%) | 6 (15.8%) | 32 (84.2%) |
| Height (cm) | 162.9 ± 10.3 | 164.3 ± 10.1 | 162.4 ± 10.3 |
| Weight (kg) * | 90.4 ± 21.6 | 97.5 ± 27.9 | 87.8 ± 18.3 |
| Body mass index (kg/m2) * | 34.1 ± 7.5 | 36.0 ± 9.3 | 33.4 ± 6.7 |
| Obesity | |||
| No | 96 (35.2%) | 20 (20.8%) | 76 (79.2%) |
| Yes | 177 (64.8%) | 52 (29.4%) | 125 (70.6%) |
| Comorbidity | |||
| Number of diseases | 2.2 ± 1.0 | 2.2 ± 1.0 | 2.2 ± 1.0 |
| Hypertension | 144 (52.7%) | 37 (25.7%) | 107 (74.3%) |
| Dyslipidemia | 125 (45.8%) | 30 (24.0%) | 95 (76.0%) |
| History of CVD | 48 (17.8%) | 15 (31.3%) | 33 (68.8%) |
| ESRD | 19 (7.0%) | 4 (21.1%) | 15 (78.9%) |
| Diabetes treatment | |||
| Insulin use * | 97 (35.5%) | 33 (34.0%) | 64 (66.0%) |
| OHA use | 159 (58.2%) | 44 (27.7%) | 115 (72.3%) |
| Diabetic diet only * | 51 (18.7%) | 4 (7.8%) | 47 (92.2%) |
| Total (N = 273) | High-Risk FAST Score (>0.35) | ||
|---|---|---|---|
| Yes (N = 72) | No (N = 201) | ||
| Hemoglobin (g/dL) * | |||
| Mean ± SD | 13.2 ± 1.9 | 13.6 ± 1.9 | 13.0 ± 1.9 |
| Platelets (k/mL) * | |||
| Mean ± SD | 266.1 ± 86.5 | 245.8 ± 93.4 | 273.4 ± 82.9 |
| Total bilirubin (mg/dL) | |||
| Median (IQR) | 0.6 ± 0.4 | 0.6 ± 0.4 | 0.5 ± 0.4 |
| Albumin (g/dL) * | |||
| Median (IQR) | 3.9 (3.6–4.2) | 3.8 (3.4–4.1) | 3.9 (3.6–4.2) |
| AST (U/L) * | |||
| Median (IQR) | 21 (17–30) | 42 (31–56) | 19 (15–23) |
| ALT (U/L) * | |||
| Median (IQR) | 31 (21–48) | 63 (42–85) | 25 (18–35) |
| GGT (U/L) * | |||
| Median (IQR) | 38 (25–68) | 75 (46–193) | 31 (23–49) |
| INR | |||
| Median (IQR) | 1.0 (0.9–1.0) | 1.0 (1.0–1.0) | 1.0 (0.9–1.0) |
| Total cholesterol (mg/dL) | |||
| Median (IQR) | 172 (146–200) | 166 (142–197) | 173 (149–201) |
| LDL (mg/dL) | |||
| Median (IQR) | 106 (81–128) | 98 (74–126) | 108 (83–129) |
| HDL (mg/dL) | |||
| Median (IQR) | 45 (37–54) | 42 (35–52) | 45 (38–55) |
| Triglycerides (mg/dL) | |||
| Median (IQR) | 122 (83–165) | 123 (89–182) | 121 (83–163) |
| Creatinine (mg/dL) | |||
| Median (IQR) | 0.80 (0.68–1.00) | 0.83 (0.67–1.00) | 0.79 (0.68–1.02) |
| HbA1c * | |||
| Median (IQR) | 7.2 (6.4–8.7) | 8.0 (7.1–9.8) | 7.0 (6.3–8.1) |
| Fasting blood glucose (mg/dL) * | |||
| Median (IQR) | 124 (103–171) | 147 (113–195) | 119 (102–160) |
| Total (N = 273) | High Risk FAST Score (>0.35) | p Value | ||
|---|---|---|---|---|
| Yes (N = 72) | No (N = 201) | |||
| FAST, median (IQR) | 0.13 (0.05–0.38) | 0.59 (0.48–0.75) | 0.08 (0.04–0.15) | <0.001 |
| LSM (kPa) | ||||
| Median (IQR) | 5.7 (4.3–7.8) | 11.2 (7.2–18.8) | 5.1 (4.1–6.1) | <0.001 |
| F1 No or mild fibrosis (<8.2) | 212 (77.7%) | 26 (12.3%) | 186 (87.7%) | <0.001 |
| F2 Significant fibrosis (8.2–9.6) | 11 (4.0%) | 5 (45.5%) | 6 (54.5%) | |
| F3 Advanced fibrosis (9.7–13.5) | 20 (7.3%) | 14 (70.0%) | 6 (30.0%) | |
| F4 Cirrhosis (≥13.6) | 30 (11.0%) | 27 (90.0%) | 3 (10.0%) | |
| LSM (kPa) | ||||
| F1–2 No advanced fibrosis (<9.7) | 223 (81.7%) | 31 (13.9%) | 192 (86.1%) | <0.001 |
| F3–4 Advanced fibrosis (≥9.7) | 50 (18.3%) | 41 (82.0%) | 9 (18.0%) | |
| FIB-4 | ||||
| Median (IQR) | 0.81 (0.57–1.23) | 1.26 (0.82–1.61) | 0.71 (0.51–0.96) | <0.001 |
| Low risk (<1.3/2.0) | 223 (81.7%) | 40 (17.9%) | 183 (82.1%) | <0.001 |
| Indeterminate risk (≥1.3/2.0) | 41 (15.0%) | 25 (61.0%) | 16 (39.0%) | |
| High risk (≥2.67) | 9 (3.3%) | 7 (77.8%) | 2 (22.2%) | |
| FIB-4 | ||||
| Low risk (<1.3) | 213 (78.0%) | 38 (17.8%) | 175 (82.2%) | <0.001 |
| High risk (≥1.3) | 60 (22.0%) | 34 (56.7%) | 26 (43.3%) | |
| CAP (dB/m) | ||||
| Median (IQR) | 313 (277–352) | 350 (310–382) | 297 (269–339) | <0.001 |
| S0 No steatosis (<274) | 64 (23.4%) | 9 (14.1%) | 55 (85.9%) | <0.001 |
| S1 Mild steatosis (274–290) | 35 (12.8%) | 2 (5.7%) | 33 (94.3%) | |
| S2 Moderate steatosis (291–302) | 21 (7.7%) | 4 (19.0%) | 17 (81.0%) | |
| S3 Severe steatosis (>302) | 153 (56.0%) | 57 (37.3%) | 96 (62.7%) | |
| CAP (dB/m) | ||||
| S0–1 No or mild steatosis (≤290) | 99 (36.3%) | 11 (11.1%) | 88 (88.9%) | <0.001 |
| S2–3 Moderate or severe steatosis (>290) | 174 (63.7%) | 61 (35.1%) | 113 (64.9%) | |
| FibroScan Probe | ||||
| M | 138 (50.5%) | 34 (24.6%) | 104 (75.4%) | 0.510 |
| XL | 135 (49.5%) | 38 (28.1%) | 97 (71.9%) | |
| FAST Score | FIB-4 Index | p Value | |
|---|---|---|---|
| Diagnostic accuracy | 85.4% | 77.3% | <0.001 |
| Sensitivity | 82.0% | 48.0% | <0.001 |
| Specificity | 86.1% | 83.9% | 0.508 |
| Positive predictive value | 56.9% | 40.0% | 0.053 |
| Negative predictive value | 95.5% | 87.8% | 0.005 |
| Area Under the Curve | 95% Confidence Interval | p Value | ||
|---|---|---|---|---|
| Lower Limit | Upper Limit | |||
| FAST score | 0.936 | 0.901 | 0.971 | <0.001 |
| FIB-4 | 0.711 | 0.625 | 0.797 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alsaid, A.; Al Argan, R.J.; Elamin, Y.A.; Alshiekh, N.; Hassan, A.; Alotaibi, A.; Gaarour, I.; Ismail, M.H. Use of FibroScan-AST (FAST) Score and Fibrosis-4 Index to Identify Advanced Liver Fibrosis in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease. J. Clin. Med. 2026, 15, 50. https://doi.org/10.3390/jcm15010050
Alsaid A, Al Argan RJ, Elamin YA, Alshiekh N, Hassan A, Alotaibi A, Gaarour I, Ismail MH. Use of FibroScan-AST (FAST) Score and Fibrosis-4 Index to Identify Advanced Liver Fibrosis in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease. Journal of Clinical Medicine. 2026; 15(1):50. https://doi.org/10.3390/jcm15010050
Chicago/Turabian StyleAlsaid, Abir, Reem J. Al Argan, Yasir A. Elamin, Nora Alshiekh, Amna Hassan, Abdullah Alotaibi, Ihab Gaarour, and Mona H. Ismail. 2026. "Use of FibroScan-AST (FAST) Score and Fibrosis-4 Index to Identify Advanced Liver Fibrosis in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease" Journal of Clinical Medicine 15, no. 1: 50. https://doi.org/10.3390/jcm15010050
APA StyleAlsaid, A., Al Argan, R. J., Elamin, Y. A., Alshiekh, N., Hassan, A., Alotaibi, A., Gaarour, I., & Ismail, M. H. (2026). Use of FibroScan-AST (FAST) Score and Fibrosis-4 Index to Identify Advanced Liver Fibrosis in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease. Journal of Clinical Medicine, 15(1), 50. https://doi.org/10.3390/jcm15010050

