Asymptomatic Aortic Regurgitation: Evolving Imaging Markers and Contemporary Intervention Strategies
Abstract
1. Introduction
2. Methods
3. Multimodal Imaging in Aortic Regurgitation
4. Early Detection of LV Dysfunction
5. Surgical and Percutaneous Interventions
6. Aortic Valve Repair and Valve-Sparing Aortic Root Replacement
7. Ross Procedure: Pulmonary Autograft Aortic Replacement
8. Transcatheter Aortic Valve Replacement
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AR | Aortic regurgitation |
| AVR | Aortic valve replacement |
| CMR | Cardiac magnetic resonance |
| GLS | Global longitudinal strain |
| iECV | Indexed extracellular volume |
| LGE | Late gadolinium enhancement |
| LV | Left ventricle/left ventricular |
| LVEF | Left ventricular ejection fraction |
| LVESVi | Left ventricular end-systolic volume index |
| TAVR | Transcatheter aortic valve replacement |
References
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Gössl, M.; Stanberry, L.; Benson, G.; Steele, E.; Garberich, R.; Witt, D.; Cavalcante, J.; Sharkey, S.; Enriquez-Sarano, M. Burden of Undiagnosed Valvular Heart Disease in the Elderly in the Community: Heart of New Ulm Valve Study. JACC Cardiovasc. Imaging 2023, 16, 1118–1120. [Google Scholar] [CrossRef]
- Généreux, P.; Amoroso, N.S.; Thourani, V.H.; Rodriguez, E.; Sharma, R.P.; Pinto, D.S.; Kwon, M.; Dobbles, M.; Pellikka, P.A.; Gillam, L.D. Mortality Burden for Patients with Untreated Aortic Regurgitation. JACC Adv. 2024, 3, 101228. [Google Scholar] [CrossRef]
- D’Arcy, J.L.; Coffey, S.; Loudon, M.A.; Kennedy, A.; Pearson-Stuttard, J.; Birks, J.; Frangou, E.; Farmer, A.J.; Mant, D.; Wilson, J.; et al. Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: The OxVALVE Population Cohort Study. Eur. Heart J. 2016, 37, 3515–3522a. [Google Scholar] [CrossRef]
- Vanoverschelde, J.L.; Vancraeynest, D. Progression of Aortic Regurgitation: The Missing Link Between Disease Severity and Clinical Complications. J. Am. Coll. Cardiol. 2019, 74, 2493–2495. [Google Scholar] [CrossRef]
- Yang, L.T.; Enriquez-Sarano, M.; Michelena, H.I.; Nkomo, V.T.; Scott, C.G.; Bailey, K.R.; Oguz, D.; Wajih Ullah, M.; Pellikka, P.A. Predictors of Progression in Patients with Stage B Aortic Regurgitation. J. Am. Coll. Cardiol. 2019, 74, 2480–2492. [Google Scholar] [CrossRef]
- Yang, L.T.; Michelena, H.I.; Scott, C.G.; Enriquez-Sarano, M.; Pislaru, S.V.; Schaff, H.V.; Pellikka, P.A. Outcomes in Chronic Hemodynamically Significant Aortic Regurgitation and Limitations of Current Guidelines. J. Am. Coll. Cardiol. 2019, 73, 1741–1752. [Google Scholar] [CrossRef]
- Sannino, A.; Fortuni, F. Timing for Intervention in Aortic Regurgitation: When One Does Not Fit All. J. Am. Coll. Cardiol. 2023, 81, 1488–1490. [Google Scholar] [CrossRef] [PubMed]
- de Meester, C.; Gerber, B.L.; Vancraeynest, D.; Pouleur, A.C.; Noirhomme, P.; Pasquet, A.; de Kerchove, L.; El Khoury, G.; Vanoverschelde, J.L. Do Guideline-Based Indications Result in an Outcome Penalty for Patients with Severe Aortic Regurgitation? JACC Cardiovasc. Imaging 2019, 12, 2126–2138. [Google Scholar]
- Anand, V.; Michelena, H.I.; Scott, C.G.; Lee, A.T.; Rigolin, V.H.; Pislaru, S.V.; Kane, G.C.; Crestanello, J.A.; Pellikka, P.A. Echocardiographic Markers of Early Left Ventricular Dysfunction in Asymptomatic Aortic Regurgitation: Is It Time to Change the Guidelines? JACC Cardiovasc. Imaging 2025, 18, 266–274. [Google Scholar]
- Ranard, L.S.; Bonow, R.O.; Nishimura, R.; Mack, M.J.; Thourani, V.H.; Bavaria, J.; O’Gara, P.T.; Bax, J.J.; Blanke, P.; Delgado, V.; et al. Imaging Methods for Evaluation of Chronic Aortic Regurgitation in Adults: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 1953–1966. [Google Scholar] [CrossRef]
- Calleja, A.; Thavendiranathan, P.; Ionasec, R.I.; Houle, H.; Liu, S.; Voigt, I.; Sai Sudhakar, C.; Crestanello, J.; Ryan, T.; Vannan, M.A. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: Comparison to computed tomography in normals and clinical implications. Circ. Cardiovasc. Imaging 2013, 6, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Ewe, S.H.; Delgado, V.; Van Der Geest, R.; Westenberg, J.J.M.; Haeck, M.L.A.; Witkowski, T.G.; Auger, D.; Marsan, N.A.; Holman, E.R.; de Roos, A.; et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am. J. Cardiol. 2013, 112, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Perez De Isla, L.; Zamorano, J.; Fernandez-Golfin, C.; Ciocarelli, S.; Corros, C.; Sanchez, T.; Ferreirós, J.; Marcos-Alberca, P.; Almeria, C.; Rodrigo, J.L.; et al. 3D color-Doppler echocardiography and chronic aortic regurgitation: A novel approach for severity assessment. Int. J. Cardiol. 2013, 166, 640–645. [Google Scholar] [CrossRef]
- Malahfji, M.; Crudo, V.; Kaolawanich, Y.; Nguyen, D.T.; Telmesani, A.; Saeed, M.; Reardon, M.J.; Zoghbi, W.A.; Polsani, V.; Elliott, M.; et al. Influence of Cardiac Remodeling on Clinical Outcomes in Patients with Aortic Regurgitation. J. Am. Coll. Cardiol. 2023, 81, 1885–1898. [Google Scholar] [CrossRef]
- Hashimoto, G.; Enriquez-Sarano, M.; Stanberry, L.I.; Oh, F.; Wang, M.; Acosta, K.; Sato, H.; Lopes, B.B.C.; Fukui, M.; Garcia, S.; et al. Association of Left Ventricular Remodeling Assessment by Cardiac Magnetic Resonance with Outcomes in Patients with Chronic Aortic Regurgitation. JAMA Cardiol. 2022, 7, 924–933. [Google Scholar] [CrossRef]
- Malahfji, M.; Senapati, A.; Tayal, B.; Nguyen, D.T.; Graviss, E.A.; Nagueh, S.F.; Reardon, M.J.; Quinones, M.; Zoghbi, W.A.; Shah, D.J. Myocardial scar and mortality in chronic aortic regurgitation. J. Am. Heart Assoc. 2020, 9, e018731. [Google Scholar] [CrossRef]
- Senapati, A.; Malahfji, M.; Debs, D.; Yang, E.Y.; Nguyen, D.T.; Graviss, E.A.; Shah, D.J. Regional Replacement and Diffuse Interstitial Fibrosis in Aortic Regurgitation: Prognostic Implications from Cardiac Magnetic Resonance. JACC Cardiovasc. Imaging 2021, 14, 2170–2182. [Google Scholar] [CrossRef]
- Zito, F.; Veen, K.M.; Melina, G.; Lansac, E.; Schäfers, H.J.; de Kerchove, L.; Takkenberg, J.J.M.; Kluin, J.; Mokhles, M.M. Aortic valve repair in adults: Long-term clinical outcomes and echocardiographic evolution in different valve repair techniques. Eur. J. Cardio-Thorac. Surg. 2025, 67, ezaf020. [Google Scholar] [CrossRef]
- Mazine, A.; El-Hamamsy, I.; Verma, S.; Peterson, M.D.; Bonow, R.O.; Yacoub, M.H.; David, T.E.; Bhatt, D.L. Ross Procedure in Adults for Cardiologists and Cardiac Surgeons: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2761–2777. [Google Scholar] [CrossRef] [PubMed]
- Samimi, S.; Hatab, T.; Kharsa, C.; Khan, S.U.; Bou Chaaya, R.G.; Qamar, F.; Aoun, J.; Zaid, S.; Faza, N.; Atkins, M.D.; et al. Meta-Analysis of Dedicated vs Off-Label Transcatheter Devices for Native Aortic Regurgitation. JACC Cardiovasc Interv. 2024, 18, 44–57. [Google Scholar] [CrossRef]
- Pouleur, A.C.; le Polain de Waroux, J.B.; Goffinet, C.; Vancraeynest, D.; Pasquet, A.; Gerber, B.L.; Vanoverschelde, J.L. Accuracy of the Flow Convergence Method for Quantification of Aortic Regurgitation in Patients with Central Versus Eccentric Jets. Am. J. Cardiol. 2008, 102, 475–480. [Google Scholar] [CrossRef]
- Choi, J.; Hong, G.R.; Kim, M.; Cho, I.J.; Shim, C.Y.; Chang, H.J.; Mancina, J.; Ha, J.W.; Chung, N. Automatic quantification of aortic regurgitation using 3D full volume color doppler echocardiography: A validation study with cardiac magnetic resonance imaging. Int. J. Cardiovasc. Imaging 2015, 31, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, Y.; Kanzaki, H.; Yonezawa, R.; Joh, Y.; Moriuchi, K.; Amano, M.; Okada, A.; Amaki, M.; Izumi, C. Diagnostic value of vena contracta area measurement using three-dimensional transesophageal echocardiography in assessing the severity of aortic regurgitation. Echocardiography 2021, 38, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.T.; Lee, C.C.; Su, C.H.; Amano, M.; Nabeshima, Y.; Kitano, T.; Tsai, C.M.; Hung, C.L.; Nakaoku, Y.; Nishimura, K.; et al. Analysis of Left Ventricular Indexes and Mortality Among Asian Adults with Hemodynamically Significant Chronic Aortic Regurgitation. JAMA Netw. Open 2023, 6, e234632. [Google Scholar] [CrossRef] [PubMed]
- Hanet, V.; Schäfers, H.J.; Lansac, E.; de Kerchove, L.; El Hamansy, I.; Vojácek, J.; Contino, M.; Pouleur, A.C.; Beauloye, C.; Pasquet, A.; et al. Impact of early versus class I–triggered surgery on postoperative survival in severe aortic regurgitation: An observational study from the Aortic Valve Insufficiency and Ascending Aorta Aneurysm International Registry. J. Thorac. Cardiovasc. Surg. 2023, 168, 1011–1022. [Google Scholar] [CrossRef]
- Tornos, P.; Sambola, A.; Permanyer-Miralda, G.; Evangelista, A.; Gomez, Z.; Soler-Soler, J. Long-term outcome of surgically treated aortic regurgitation: Influence of guideline adherence toward early surgery. J. Am. Coll. Cardiol. 2006, 47, 1012–1017. [Google Scholar] [CrossRef]
- Mentias, A.; Feng, K.; Alashi, A.; Leonardo Rodriguez, L.; Gillinov, A.M.; Johnston, D.R.; Sabik, J.F.; Svensson, L.G.; Grimm, R.A.; Griffin, B.P.; et al. Long-Term Outcomes in Patients with Aortic Regurgitation and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2016, 68, 2144–2153. [Google Scholar] [CrossRef]
- Lopez Santi, P.; Bernard, J.; Fortuni, F.; Butcher, S.C.; Meucci, M.C.; Sarrazyn, C.; Chua, A.P.; Nabeta, T.; Zhang, J.; Popescu, B.A.; et al. Left ventricular dilatation in patients with significant aortic regurgitation: Association with outcome. Eur. Heart J. Cardiovasc. Imaging 2025, 26, 1466–1474. [Google Scholar] [CrossRef]
- Yang, L.T.; Anand, V.; Zambito, E.I.; Pellikka, P.A.; Scott, C.G.; Thapa, P.; Padang, R.; Takeuchi, M.; Nishimura, R.A.; Enriquez-Sarano, M.; et al. Association of echocardiographic left ventricular end-systolic volume and volume-derived ejection fraction with outcome in asymptomatic chronic aortic regurgitation. JAMA Cardiol. 2021, 6, 189–198. [Google Scholar] [CrossRef]
- Alashi, A.; Khullar, T.; Mentias, A.; Gillinov, A.M.; Roselli, E.E.; Svensson, L.G.; Popovic, Z.B.; Griffin, B.P.; Desai, M.Y. Long-Term Outcomes After Aortic Valve Surgery in Patients with Asymptomatic Chronic Aortic Regurgitation and Preserved LVEF: Impact of Baseline and Follow-Up Global Longitudinal Strain. JACC Cardiovasc. Imaging 2020, 13, 12–21. [Google Scholar] [CrossRef]
- Yang, L.T.; Takeuchi, M.; Scott, C.G.; Thapa, P.; Wang, T.D.; Villarraga, H.R.; Padang, R.; Enriquez-Sarano, M.; Michelena, H.I. Automated Global Longitudinal Strain Exhibits a Robust Association with Death in Asymptomatic Chronic Aortic Regurgitation. J. Am. Soc. Echocardiogr. 2022, 35, 692–702.e8. [Google Scholar] [CrossRef]
- Akintoye, E.; El Dahdah, J.; Dabbagh, M.M.; Patel, H.; Badwan, O.; Braghieri, L.; Chedid El Helou, M.; Kassab, J.; Jellis, C.L.; Desai, M.Y.; et al. Longitudinal Assessment of Left Atrial Remodeling in Patients with Chronic Severe Aortic Regurgitation. JACC Cardiovasc. Imaging 2024, 17, 1133–1145. [Google Scholar] [CrossRef]
- Lai, K.Y.; Lee, C.Y.; Chang, Y.C.; Liu, K.; Takeuchi, M.; Yang, L.T.; Ho, Y.L. Prognostic value of fully-automated left atrial strain in patients with asymptomatic chronic severe aortic regurgitation. Int. J. Cardiol. 2024, 416, 132487. [Google Scholar] [CrossRef]
- Izumi, C.; Eishi, K.; Ashihara, K.; Arita, T.; Otsuji, Y.; Kunihara, T.; Komiya, T.; Shibata, T.; Seo, Y.; Daimon, M.; et al. JCS/JSCS/JATS/JSVS 2020 Guidelines on the Management of Valvular Heart Disease. Circ. J. 2020, 84, 2037–2119. [Google Scholar] [CrossRef]
- Popović, Z.B.; Desai, M.Y.; Griffin, B.P. Decision Making with Imaging in Asymptomatic Aortic Regurgitation. JACC Cardiovasc. Imaging 2018, 11, 1499–1513. [Google Scholar] [CrossRef]
- Kusunose, K.; Agarwal, S.; Marwick, T.H.; Griffin, B.P.; Popovic, Z.B. Decision making in asymptomatic aortic regurgitation in the era of guidelines incremental values of resting and exercise cardiac dysfunction. Circ. Cardiovasc. Imaging 2014, 7, 352–362. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.J.; Kim, E.K.; Chang, S.A.; Lee, S.C.; Ahn, J.H.; Carriere, K.; Park, S.W. Predictive value of exercise stress echocardiography in asymptomatic patients with severe aortic regurgitation and preserved left ventricular systolic function without LV dilatation. Int. J. Cardiovasc. Imaging 2019, 35, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Cawley, P.J.; Hamilton-Craig, C.; Owens, D.S.; Krieger, E.V.; Strugnell, W.E.; Mitsumori, L.; D’Jang, C.L.; Schwaegler, R.G.; Nguyen, K.Q.; Nguyen, B.; et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ. Cardiovasc. Imaging 2013, 6, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Wisenbaugh, T.; Spann, J.F.; Carabello, B.A. Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation. J. Am. Coll. Cardiol. 1984, 3, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Uretsky, S.; Supariwala, A.; Nidadovolu, P.; Khokhar, S.S.; Comeau, C.; Shubayev, O.; Campanile, F.; Wolff, S.D. Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation. J. Cardiovasc. Magn. Reson. 2010, 12, 32. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Vejpongsa, P.; Xu, J.; Quinones, M.A.; Shah, D.J.; Zoghbi, W.A. Differences in Cardiac Remodeling in Left-Sided Valvular Regurgitation: Implications for Optimal Definition of Significant Aortic Regurgitation. JACC Cardiovasc. Imaging 2022, 15, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Marigliano, A.N.; Ortiz, J.T.; Casas, J.; Evangelista, A. Aortic Regurgitation: From Valvular to Myocardial Dysfunction. J. Clin. Med. 2024, 13, 2929. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef]
- Akintoye, E.; Saijo, Y.; Braghieri, L.; Badwan, O.; Patel, H.; Dabbagh, M.M.; El Dahdah, J.; Jellis, C.L.; Desai, M.Y.; Rodriguez, L.L.; et al. Impact of Age and Sex on Left Ventricular Remodeling in Patients with Aortic Regurgitation. J. Am. Coll. Cardiol. 2023, 81, 1474–1487. [Google Scholar] [CrossRef]
- Tower-Rader, A.; Mathias, I.S.; Obuchowski, N.A.; Kocyigit, D.; Kumar, Y.; Donnellan, E.; Bolen, M.; Phelan, D.; Flamm, S.; Griffin, B.; et al. Sex-based differences in left ventricular remodeling in patients with chronic aortic regurgitation: A multi-modality study. J. Cardiovasc. Magn. Reson. 2022, 24, 12. [Google Scholar] [CrossRef]
- Malahfji, M.; Senapati, A.; Debs, D.; Saeed, M.; Tayal, B.; Nguyen, D.T.; Graviss, E.A.; Shah, D.J. Sex differences in myocardial remodeling and extracellular volume in aortic regurgitation. Sci. Rep. 2023, 13, 11334. [Google Scholar] [CrossRef] [PubMed]
- Hanet, V.; Altes, A.; de Azevedo, D.; de Meester, C.; Pasquet, A.; Pouleur, A.C.; Vanoverschelde, J.L.; Vancraeynest, D.; Gerber, B.L. Influence of age and sex on left ventricular remodelling in chronic aortic regurgitation. Eur. Heart J. Cardiovasc. Imaging 2025, 26, 1283–1291. [Google Scholar] [CrossRef]
- Lai, K.Y.; Amano, M.; Nabeshima, Y.; Lee, C.C.; Su, C.H.; Liu, K.; Kitano, T.; Wang, C.H.; Kao, H.L.; Ho, Y.L.; et al. Sex-Specific Left Ventricular and Aorta Size Cut-Off Values for Hemodynamically Significant Chronic Aortic Regurgitation—Implications for Treatment in Asian Populations. Circ. J. 2024, 88, 2010–2020. [Google Scholar] [CrossRef]
- Nabeshima, Y.; Addetia, K.; Asch, F.M.; Lang, R.M.; Takeuchi, M. Application of Allometric Methods for Indexation of Left Ventricular End-Diastolic Volume to Normal Echocardiographic Data and Assessing Gender and Racial Differences. J. Am. Soc. Echocardiogr. 2023, 36, 596–603.e3. [Google Scholar] [CrossRef]
- Yang, W.; Xu, J.; Zhu, L.; Zhang, Q.; Wang, Y.; Zhao, S.; Lu, M. Myocardial Strain Measurements Derived from MR Feature-Tracking: Influence of Sex, Age, Field Strength, and Vendor. JACC Cardiovasc. Imaging 2024, 17, 364–379. [Google Scholar] [CrossRef]
- Praz, F.; Borger, M.A.; Lanz, J.; Marin-Cuartas, M.; Abreu, A.; Adamo, M.; Ajmone Marsan, N.; Barili, F.; Bonaros, N.; Cosyns, B.; et al. 2025 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2025, 46, 4635–4736. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef] [PubMed]
- Postigo, A.; Pérez-David, E.; Revilla, A.; Raquel, L.A.; González-Mansilla, A.; Prieto-Arévalo, R.; Espinosa, M.Á.; López-Jimenez, R.A.; Sevilla, T.; Urueña, N.; et al. A comparison of the clinical efficacy of echocardiography and magnetic resonance for chronic aortic regurgitation. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 392–401. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, J.; Liu, D.; Yang, Q. Prognostic value of late gadolinium enhancement on CMR in patients with severe aortic valve disease: A systematic review and meta-analysis. Clin. Radiol. 2018, 73, 983.e7–983.e14. [Google Scholar] [CrossRef]
- Pires, L.T.; Rosa, V.E.E.; Morais, T.C.; Bello, J.H.S.M.; Fernandes, J.R.C.; De Santis, A.; Lopes, M.P.; Gutierrez, P.S.; Rochitte, C.E.; Nomura, C.H.; et al. Postoperative myocardial fibrosis assessment in aortic valvular heart diseases—A cardiovascular magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Thornton, G.D.; McKenna, M.; Bennett, J.B.; Hughes, A.; González, A.; Khanji, M.Y.; Cavalcante, J.L.; Lloyd, G.; Moon, J.C.; Bhattacharyya, S.; et al. Myocardial remodelling in aortic regurgitation: Time to think beyond volumes and function? Eur. Heart J. Cardiovasc. Imaging 2025, 26, 1829–1839. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Rider, O.; Cvijic, M.; Valkovič, L.; Remme, E.W.; Voigt, J.U. Myocardial Strain Imaging: Theory, Current Practice, and the Future. JACC Cardiovasc. Imaging 2025, 18, 340–381. [Google Scholar] [CrossRef]
- Alashi, A.; Mentias, A.; Abdallah, A.; Feng, K.; Gillinov, A.M.; Rodriguez, L.L.; Johnston, D.R.; Svensson, L.G.; Popovic, Z.B.; Griffin, B.P.; et al. Incremental Prognostic Utility of Left Ventricular Global Longitudinal Strain in Asymptomatic Patients with Significant Chronic Aortic Regurgitation and Preserved Left Ventricular Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kočková, R.; Línková, H.; Hlubocká, Z.; Mědílek, K.; Tuna, M.; Vojáček, J.; Skalský, I.; Černý, Š.; Malý, J.; Hlubocký, J.; et al. Multiparametric Strategy to Predict Early Disease Decompensation in Asymptomatic Severe Aortic Regurgitation. Circ. Cardiovasc. Imaging 2022, 15, e014901. [Google Scholar] [CrossRef]
- Thomas, J.D.; Edvardsen, T.; Abraham, T.; Appadurai, V.; Badano, L.; Banchs, J.; Cho, G.Y.; Cosyns, B.; Delgado, V.; Donal, E.; et al. Clinical Applications of Strain Echocardiography: A Clinical Consensus Statement from the American Society of Echocardiography Developed in Collaboration With the European Association of Cardiovascular Imaging of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2025, 38, 985–1020. [Google Scholar] [CrossRef] [PubMed]
- Mihos, C.G.; Liu, J.E.; Anderson, K.M.; Pernetz, M.A.; O’Driscoll, J.M.; Aurigemma, G.P.; Ujueta, F.; Wessly, P.; American Heart Association Council on Peripheral Vascular Disease; Council on Cardiovascular and Stroke Nursing; et al. Speckle-Tracking Strain Echocardiography for the Assessment of Left Ventricular Structure and Function: A Scientific Statement from the American Heart Association. Circulation 2025, 152, e96–e109. [Google Scholar] [CrossRef]
- Sade, L.E.; Joshi, S.S.; Cameli, M.; Cosyns, B.; Delgado, V.; Donal, E.; Edvardsen, T.; Carvalho, R.F.; Manka, R.; Podlesnikar, T.; et al. Current clinical use of speckle-tracking strain imaging: Insights from a worldwide survey from the European Association of Cardiovascular Imaging (EACVI). Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1583–1592. [Google Scholar] [CrossRef]
- Pathan, F.; Zainal Abidin, H.A.; Vo, Q.H.; Zhou, H.; D’Angelo, T.; Elen, E.; Negishi, K.; Puntmann, V.O.; Marwick, T.H.; Nagel, E. Left atrial strain: A multi-modality, multi-vendor comparison study. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Mirea, O.; Duchenne, J.; Voigt, J.U. Comparison between Nondedicated and Novel Dedicated Tracking Tool for Right Ventricular and Left Atrial Strain. J. Am. Soc. Echocardiogr. 2022, 35, 419–425. [Google Scholar] [CrossRef]
- Danaila, V.; Archer, O.; Stefani, L.; Ferkh, A.; Khanna, S.; Pathan, F.; Brown, P.; Thomas, L. Vendor and software based variation in left atrial strain measurements: Implications for clinical practice. Int. J. Cardiovasc. Imaging 2025, 41, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.; Hu, H.; Weston, A.D.; Scott, C.G.; Michelena, H.I.; Pislaru, S.V.; Carter, R.E.; Pellikka, P.A. Machine learning-based risk stratification for mortality in patients with severe aortic regurgitation. Eur. Heart J.—Digit. Health 2023, 4, 188–195. [Google Scholar] [CrossRef]
- Armoundas, A.A.; Narayan, S.M.; Arnett, D.K.; Spector-Bagdady, K.; Bennett, D.A.; Celi, L.A.; Friedman, P.A.; Gollob, M.H.; Hall, J.L.; Kwitek, A.E.; et al. Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement from the American Heart Association. Circulation 2024, 149, e1028–e1050. [Google Scholar] [CrossRef] [PubMed]
- Nedadur, R.; Wang, B.; Tsang, W. Artificial intelligence for the echocardiographic assessment of valvular heart disease. Heart 2022, 108, 1592–1599. [Google Scholar] [CrossRef]
- Thourani, V.H.; Puskas, J.D.; Griffith, B.; Svensson, L.G.; Pibarot, P.; Borger, M.A.; Heimansohn, D.; Beaver, T.; Blackstone, E.H.; Antonio, A.L.M.; et al. Five-year Comparison of Clinical and Echocardiographic Outcomes of Pure Aortic Stenosis with Pure Aortic Regurgitation or Mixed Aortic Valve Disease in the COMMENCE Trial. JTCVS Open 2024, 22, 160–173. [Google Scholar] [CrossRef]
- Chaliki, H.P.; Mohty, D.; Avierinos, J.F.; Scott, C.G.; Schaff, H.V.; Tajik, A.J.; Enriquez-Sarano, M. Outcomes after aortic valve replacement in patients with severe aortic regurgitation and markedly reduced left ventricular function. Circulation 2002, 106, 2687–2693. [Google Scholar] [CrossRef] [PubMed]
- Poh, C.L.; Buratto, E.; Larobina, M.; Wynne, R.; O’Keefe, M.; Goldblatt, J.; Tatoulis, J.; Skillington, P.D. The Ross procedure in adults presenting with bicuspid aortic valve and pure aortic regurgitation: 85% freedom from reoperation at 20 years. Eur. J. Cardio-Thorac. Surg. 2018, 54, 420–426. [Google Scholar] [CrossRef]
- Abeln, K.B.; Ehrlich, T.; Souko, I.; Brenner, F.; Schäfers, H.J. Autograft reoperations after the Ross procedure. Eur. J. Cardio-Thorac. Surg. 2023, 63, ezad117. [Google Scholar] [CrossRef] [PubMed]
- Tamer, S.; Mastrobuoni, S.; Vancraeynest, D.; Lemaire, G.; Navarra, E.; Khoury, G.E.; de Kerchove, L. Late results of aortic valve repair for isolated severe aortic regurgitation. J. Thorac. Cardiovasc. Surg. 2023, 165, 995–1006.e3. [Google Scholar] [CrossRef]
- Mentias, A.; Saad, M.; Menon, V.; Reed, G.W.; Popovic, Z.; Johnston, D.; Rodriguez, L.; Gillinov, M.; Griffin, B.; Jneid, H.; et al. Transcatheter vs Surgical Aortic Valve Replacement in Pure Native Aortic Regurgitation. Ann. Thorac. Surg. 2023, 115, 870–876. [Google Scholar] [CrossRef]
- Poletti, E.; De Backer, O.; Scotti, A.; Costa, G.; Bruno, F.; Fiorina, C.; Buzzatti, N.; Latini, A.; Rudolph, T.K.; van den Dorpel, M.M.P.; et al. Transcatheter Aortic Valve Replacement for Pure Native Aortic Valve Regurgitation: The PANTHEON International Project. JACC Cardiovasc. Interv. 2023, 16, 1974–1985. [Google Scholar] [CrossRef]
- Vahl, T.P.; Thourani, V.H.; Makkar, R.R.; Hamid, N.; Khalique, O.K.; Daniels, D.; McCabe, J.M.; Satler, L.; Russo, M.; Cheng, W.; et al. Transcatheter aortic valve implantation in patients with high-risk symptomatic native aortic regurgitation (ALIGN-AR): A prospective, multicentre, single-arm study. Lancet 2024, 403, 1451–1459. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Vahl, T.P.; Yadav, P.K.; McCabe, J.M.; George, I.; Satler, L.; Chetcuti, S.; Daniels, D.V.; Waggoner, T.; et al. Transcatheter aortic valve implantation with the Trilogy valve for symptomatic native aortic regurgitation (ALIGN-AR): A pivotal, multicentre, single-arm, investigational device exemption study. Lancet 2025, 406, 2757–2771. [Google Scholar] [CrossRef]
- De Paulis, R.; Chirichilli, I.; De Kerchove, L.; Della Corte, A.; El Khoury, G.; Michelena, H.I.; Salica, A.; Schäfers, H.J. Current status of aortic valve repair surgery. Eur. Heart J. 2025, 46, 1394–1411. [Google Scholar] [CrossRef] [PubMed]
- Price, J.; De Kerchove, L.; Glineur, D.; Vanoverschelde, J.L.; Noirhomme, P.; El Khoury, G. Risk of valve-related events after aortic valve repair. Ann. Thorac. Surg. 2013, 95, 606–613. [Google Scholar] [CrossRef]
- el Mathari, S.; Boulidam, N.; de Heer, F.; de Kerchove, L.; Schäfers, H.J.; Lansac, E.; Twisk, J.W.R.; Kluin, J.; Aortic Valve Research Network Investigators. Surgical outcomes of aortic valve repair for specific aortic valve cusp characteristics; retraction, calcification, and fenestration. J. Thorac. Cardiovasc. Surg. 2023, 166, 1627–1634.e3. [Google Scholar] [CrossRef] [PubMed]
- Lansac, E.; de Kerchove, L. Aortic valve repair techniques: State of the art. Eur. J. Cardio-Thorac. Surg. 2018, 53, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, G.; Vanoverschelde, J.L.; Glineur, D.; Pierard, F.; Verhelst, R.R.; Rubay, J.; Funken, J.C.; Watremez, C.; Astarci, P.; Lacroix, V.; et al. Repair of bicuspid aortic valves in patients with aortic regurgitation. Circulation 2006, 114, I-610. [Google Scholar] [CrossRef]
- De Meester, C.; Pasquet, A.; Gerber, B.L.; Vancraeynest, D.; Noirhomme, P.; El Khoury, G.; Vanoverschelde, J.L. Valve repair improves the outcome of surgery for chronic severe aortic regurgitation: A propensity score analysis. J. Thorac. Cardiovasc. Surg. 2014, 148, 1913–1920. [Google Scholar] [CrossRef]
- Almaghrabi, S.; Michelena, H.; Jelenc, M.; Abeln, K.B.; Ehrlich, T.; Schäfers, H.J. Contemporary Valvular Mechanisms of Aortic Regurgitation in Tricuspid Aortic Valves: Importance in Repair Versus Replacement Strategy. J. Am. Heart Assoc. 2024, 13, e032532. [Google Scholar] [CrossRef]
- Baman, J.R.; Medhekar, A.N.; Malaisrie, S.C.; McCarthy, P.; Davidson, C.J.; Bonow, R.O. Management Challenges in Patients Younger Than 65 Years with Severe Aortic Valve Disease: A Review. JAMA Cardiol. 2023, 8, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Girdauskas, E.; Balaban, Ü.; Herrmann, E.; Bauer, T.; Beckmann, A.; Bekeredjian, R.; Ensminger, S.; Frerker, C.; Möllmann, H.; Petersen, J.; et al. Aortic Valve Repair Results in Better 1-Year Survival Than Replacement: Results from German Aortic Valve Registry. Ann. Thorac. Surg. 2024, 117, 517–525. [Google Scholar] [CrossRef]
- Aicher, D.; Fries, R.; Rodionycheva, S.; Schmidt, K.; Langer, F.; Schäfers, H.J. Aortic valve repair leads to a low incidence of valve-related complications. Eur. J. Cardio-Thorac. Surg. 2010, 37, 127–132. [Google Scholar] [CrossRef]
- Arnaoutakis, G.J.; Sultan, I.; Siki, M.; Bavaria, J.E. Bicuspid aortic valve repair: Systematic review on long-term outcomes. Ann. Cardiothorac. Surg. 2019, 8, 302–312. [Google Scholar] [CrossRef]
- Wong, C.H.M.; Chan, J.S.K.; Sanli, D.; Rahimli, R.; Harky, A. Aortic valve repair or replacement in patients with aortic regurgitation: A systematic review and meta-analysis. J. Card. Surg. 2019, 34, 377–384. [Google Scholar] [CrossRef]
- Mazine, A.; David, T.E.; Rao, V.; Hickey, E.J.; Christie, S.; Manlhiot, C.; Ouzounian, M. Long-term outcomes of the ross procedure versus mechanical aortic valve replacement. Circulation 2016, 134, 576–585. [Google Scholar] [CrossRef]
- Mazine, A.; David, T.E.; Stoklosa, K.; Chung, J.; Lafreniere-Roula, M.; Ouzounian, M. Improved Outcomes Following the Ross Procedure Compared with Bioprosthetic Aortic Valve Replacement. J. Am. Coll. Cardiol. 2022, 79, 993–1005. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kuno, T.; Toyoda, N.; Fujisaki, T.; Takagi, H.; Itagaki, S.; Ibrahim, M.; Ouzounian, M.; El-Hamamsy, I.; Fukuhara, S. Ross Procedure Versus Mechanical Versus Bioprosthetic Aortic Valve Replacement: A Network Meta-Analysis. J. Am. Heart Assoc. 2023, 12, e027715. [Google Scholar] [CrossRef]
- El-Hamamsy, I.; Toyoda, N.; Itagaki, S.; Stelzer, P.; Varghese, R.; Williams, E.E.; Erogova, N.; Adams, D.H. Propensity-Matched Comparison of the Ross Procedure and Prosthetic Aortic Valve Replacement in Adults. J. Am. Coll. Cardiol. 2022, 79, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Galzerano, D.; Kholaif, N.; Al Amro, B.; Al Admawi, M.; Eltayeb, A.; Alshammari, A.; Di Salvo, G.; Al-Halees, Z.Y. The Ross Procedure: Imaging, Outcomes and Future Directions in Aortic Valve Replacement. J. Clin. Med. 2024, 13, 630. [Google Scholar] [CrossRef] [PubMed]
- Abeln, K.B.; Froede, L.; Ehrlich, T.; Souko, I.; Schäfers, H.J. Ross Procedure for Aortic Regurgitation versus Stenosis in Adults with and Without Autograft Support. Eur. J. Cardiothorac. Surg. 2025, 67, ezaf021. [Google Scholar] [CrossRef]
- Bouhout, I.; Ghoneim, A.; Tousch, M.; Stevens, L.M.; Semplonius, T.; Tarabzoni, M.; Poirier, N.; Cartier, R.; Demers, P.; Guo, L.; et al. Impact of a tailored surgical approach on autograft root dimensions in patients undergoing the Ross procedure for aortic regurgitation. Eur. J. Cardio-Thorac. Surg. 2019, 56, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Mazine, A.; Ghoneim, A.; El-Hamamsy, I. The Ross Procedure: How I Teach It. Ann. Thorac. Surg. 2018, 105, 1294–1298. [Google Scholar] [CrossRef]
- Mazine, A.; El-Hamamsy, I. Tailoring the Ross procedure for patients with aortic regurgitation. JTCVS Tech. 2021, 10, 383–389. [Google Scholar] [CrossRef]
- Vojacek, J.; Gofus, J.; Andreas, M.; Bavaria, J.E.; Berdajs, D.; Casselman, F.P.A.; El-Hamamsy, I.; Holubec, T.; de Kerchove, L.; Milojevic, M.; et al. EACTS Expert Consensus Statement on the Ross Procedure in Adult Patients. Eur. J. Cardiothorac. Surg. 2025, ezaf295. [Google Scholar] [CrossRef]
- Oeser, C.; Uyanik-Uenal, K.; Kocher, A.; Laufer, G.; Andreas, M. The Ross procedure in adult patients: A single-centre analysis of long-term results up to 28 years. Eur. J. Cardiothorac. Surg. 2022, 62, ezac379. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.N.; Sreenivasan, J.; Forrest, J.K. Progressing Forward in Transcatheter Aortic Valve Replacement for Pure Aortic Regurgitation. JACC Cardiovasc. Interv. 2023, 16, 1986–1989. [Google Scholar] [CrossRef] [PubMed]
- Elkasaby, M.H.; Khalefa, B.B.; Yassin, M.N.A.; Alabdallat, Y.J.; Atia, A.; Altobaishat, O.; Omar, I.; Hussein, A. Transcatheter aortic valve implantation versus surgical aortic valve replacement for pure aortic regurgitation: A systematic review and meta-analysis of 33,484 patients. BMC Cardiovasc. Disord. 2024, 24, 65. [Google Scholar] [CrossRef]
- Liu, R.; Fu, Z.; Jiang, Z.; Yan, Y.; Yao, J.; Liu, X.; Yan, X.; Song, G. Transcatheter aortic valve replacement for aortic regurgitation: A systematic review and meta-analysis. ESC Heart Fail. 2024, 11, 3488–3500. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Schmidt, T.; Bleiziffer, S.; Schofer, N.; Fiorina, C.; Munoz-Garcia, A.J.; Yzeiraj, E.; Amat-Santos, I.J.; Tchetche, D.; Jung, C.; et al. Transcatheter Aortic Valve Replacement in Pure Native Aortic Valve Regurgitation. J. Am. Coll. Cardiol. 2017, 70, 2752–2763. [Google Scholar] [CrossRef]
- Da-Wei, L.; Zi-Long, W.; Yan-Xing, F.; Jia-Ning, F.; Yi-Ming, Q.; Zhi, Z.; Yu-Liang, L.; Wen-Zhi, P.; Da-Xin, Z.; Jun-Bo, G. Short-Term Outcomes of Transcatheter Aortic Valve Replacement in Low-Risk Patients with Pure Severe Aortic Regurgitation. Am. J. Cardiol. 2024, 22, 58–64. [Google Scholar] [CrossRef]
- Lin, D.W.; Weng, Z.L.; Fan, J.N.; Long, Y.L.; Guan, L.H.; Pan, W.Z.; Zhou, D.X.; Ge, J.B. Outcome of Transcatheter Aortic Valve Replacement for Pure Native Aortic Regurgitation in Patients with Pulmonary Hypertension. Rev. Cardiovasc. Med. 2024, 25, 307. [Google Scholar] [CrossRef]
- Kočková, R.; Vojáček, J.; Bedáňová, H.; Fila, P.; Skalský, I.; Žáková, D.; Klán, M.; Míková, B.; Mědílek, K.; Tuna, M.; et al. Rationale and design of the ELEANOR trial early aortic valve surgery versus watchful waiting strategy in severe asymptomatic aortic regurgitation, ACRONYM: ELEANOR. Heliyon 2024, 10, e29470. [Google Scholar] [CrossRef]
| Marker | Prognostic Cut-Off(s) | Associated Outcome(s) | Study | Year |
|---|---|---|---|---|
| LV Systolic Function | ||||
| LVEF | ≤52% | Cardiovascular mortality | Yang et al. [25] | 2023 |
| ≤53% | All-cause mortality | |||
| <55% | All-cause mortality, cardiovascular events | de Meesteret al. [9] | 2019 | |
| 50–55% | No increase in all-cause mortality with early AVS | Hanet et al. [26] | 2024 | |
| LV Linear Dimension | ||||
| LVEDD | ≥65 and 70 mm | No increase in all-cause mortality after AVS | de Meester et al. [9] | 2019 |
| >65 mm | No increase in all-cause mortality after AVS | Hanet et al. [26] | 2024 | |
| LVESD | >50 mm | All-cause mortality after AVS | Hanet et al. [26] | 2024 |
| >55 mm * | All-cause mortality, cardiac mortality, or death from heart failure or sudden death * | Tornos et al. [27] | 2006 | |
| LVESDi | ≥20 mm/m2 | All-cause mortality | Mentias et al. [28] | 2016 |
| >20, 20–25, ≥25 mm/m2 | All-cause mortality | Yang et al. [7] | 2019 | |
| >20, >22 mm/m2 | All-cause mortality, cardiovascular events | de Meester [9] | 2019 | |
| ≥20 mm/m2 | All-cause mortality | Lopez Santi et al. [29] | 2025 | |
| ≥22 mm/m2 | All-cause mortality | Yang et al. [25] | 2023 | |
| ≥23 mm/m2 | Cardiovascular mortality | |||
| >25 mm/m2 | All-cause mortality after AVS | Hanet et al. [26] | 2024 | |
| LV Volumetric Measure | ||||
| LVESVi | >45 mL/m2 | All-cause mortality under medical surveillance | Yang et al. [30] | 2021 |
| ≥46 mL/m2 | Cardiovascular mortality | Yang et al. [25] | 2023 | |
| ≥48 mL/m2 | All-cause mortality | |||
| ≥45 mL/m2 | All-cause mortality | Lopez Santi et al. [29] | 2025 | |
| Myocardial and Atrial Strain | ||||
| LVGLS | >−19% | All-cause mortality | Alashi et al. [31] | 2020 |
| >−15% | All-cause mortality | Yang et al. [32] | 2022 | |
| LASr | ≤35% | HF hospitalization, urgent AVS, or all-cause mortality | Akintoye et al. [33] | 2024 |
| <40% | All-cause mortality under medical surveillance | Lai et al. [34] | 2024 | |
| LASct | <20% | |||
| Marker | Prognostic Cut-Off(s) | Associated Outcome(s) | Study | Year |
|---|---|---|---|---|
| Regurgitant Severity | ||||
| ARF | ≥32% | All-cause mortality, HF hospitalization, or progression of NYHA under medical surveillance | Hashimoto et al. [16] | 2022 |
| >35% | Need for AVR or repair | Vejpongsa et al. [43] | 2022 | |
| ≥43% | Composite adverse outcome * | Malahfji et al. [15] | 2023 | |
| ARV | >38 mL | Need for AVR or repair | Vejpongsa et al. [43] | 2022 |
| ≥47 mL | Composite adverse outcome * | Malahfji et al. [15] | 2023 | |
| LV Linear Dimension | ||||
| LVESD | ≥40 mm | Composite adverse outcome * | Malahfji et al. [15] | 2023 |
| LVESDi | ≥20 mm/m2 | Composite adverse outcome * | Malahfji et al. [15] | 2023 |
| LV Volumetric Measure | ||||
| LVESVi | ≥43 mL/m2 | Composite adverse outcome * | Malahfji et al. [15] | 2023 |
| >45 mL/m2 | All-cause mortality, HF hospitalization, or progression of NYHA functional class under medical surveillance | Hashimoto et al. [16] | 2022 | |
| LVEDVi | ≥109 mL/m2 | Composite adverse outcome * | Malahfji et al. [15] | 2023 |
| Tissue Characterization | ||||
| LGE | Presence | All-cause mortality | Malahfji et al. [17] | 2020 |
| iECV | ≥24 mL/m2 | All-cause mortality or the need for AVR | Senapati et al. [18] | 2021 |
| Study Type | N | Population/Technique | Primary Outcome | Follow-Up | Reference |
|---|---|---|---|---|---|
| SAVR | |||||
| Single-center cohort | 539 | Severe AR with reduced LVEF | Operative mortality 5.5%; 10-yr survival 63% | 10 years | Chaliki et al., 2022 [72] |
| Ross Procedure | |||||
| Single-center cohort | 129 | Pure AR, bicuspid AV | 20-yr survival 95%; 20-yr freedom from autograft reoperation 85% | 20 years | Poh et al., 2018 [73] |
| Single-center cohort | 292 | AR vs. AS | 15-yr survival 86% vs. 93%; 10-yr freedom from reoperation 80% vs. 95% | 15 years | Abeln et al., 2025 [74] |
| Valve Repair/VSARR | |||||
| Single-center cohort | 127 | AV repair, tricuspid AV, isolated AR | 10-yr survival 81%; 10-yr freedom from reoperation 80% | 10 years | Tamer et al., 2023 [75] |
| Multicenter database | 7126 | Various AV repair/sparing techniques | 10-yr reintervention 9–20% | 10 years | Zito et al., 2025 [19] |
| TAVR (Off-label) | |||||
| Multicenter registry | 331 | Pure native AR (early vs. new-generation devices) | 1-yr mortality 16%; device success 61% vs. 81%; PVL ≥ moderate 19% vs. 4% | 1 year | Yoon et al., 2017 [76] |
| Multicenter registry | 201 | Pure native AR (self vs. balloon-expandable) | Device success 76% vs. 84%; valve embolization/migration 15% vs. 16%; PVL ≥ moderate 9% vs. 10% | 1 year | Poletti et al., 2023 [77] |
| TAVR (Dedicated) | |||||
| Prospective trial | 180 | High-risk symptomatic AR | 1-yr mortality 8%; technical success 95%; PPI 24% | 1 year | Vahl et al., 2024 [78] |
| Prospective trial | 700 | High-risk symptomatic AR | 2-yr mortality 13%; technical success 95%; PPI 22% | 2 years | Makkar et al., 2025 [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tsai, C.-M.; Lai, K.-Y.; Su, Y.-C.; Wu, C.-H.; Tsai, C.H.H.; Singh, S.; Yang, L.-T. Asymptomatic Aortic Regurgitation: Evolving Imaging Markers and Contemporary Intervention Strategies. J. Clin. Med. 2026, 15, 339. https://doi.org/10.3390/jcm15010339
Tsai C-M, Lai K-Y, Su Y-C, Wu C-H, Tsai CHH, Singh S, Yang L-T. Asymptomatic Aortic Regurgitation: Evolving Imaging Markers and Contemporary Intervention Strategies. Journal of Clinical Medicine. 2026; 15(1):339. https://doi.org/10.3390/jcm15010339
Chicago/Turabian StyleTsai, Chieh-Mei, Kuan-Yu Lai, Yu-Chien Su, Chi-Han Wu, Casper H. H. Tsai, Shivam Singh, and Li-Tan Yang. 2026. "Asymptomatic Aortic Regurgitation: Evolving Imaging Markers and Contemporary Intervention Strategies" Journal of Clinical Medicine 15, no. 1: 339. https://doi.org/10.3390/jcm15010339
APA StyleTsai, C.-M., Lai, K.-Y., Su, Y.-C., Wu, C.-H., Tsai, C. H. H., Singh, S., & Yang, L.-T. (2026). Asymptomatic Aortic Regurgitation: Evolving Imaging Markers and Contemporary Intervention Strategies. Journal of Clinical Medicine, 15(1), 339. https://doi.org/10.3390/jcm15010339

