Impact of Frailty and Other Factors as Estimated by HU to Predict Response to Anabolic Bone Medications †
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Osteoporosis and Mechanical Complications of Spinal Fusion
4.2. Frailty, Patient Risk Factors, and Osteoporosis Treatment
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | bone mineral density |
BMI | body mass index |
CI | confidence interval |
CT | computed tomography |
DEXA | dual-energy X-ray absorptiometry |
HR | hazard ratio |
HU | Hounsfield unit |
mFI5 | 5-item modified Frailty Index |
mo | month |
MR | magnetic resonance |
PLIF | posterior lumbar interbody fusion |
RAI | risk analysis index |
VF | vertebral fracture |
yr | year |
PJK | proximal junctional kyphosis |
References
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull. 2020, 133, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Bjerke, B.T.; Zarrabian, M.; Aleem, I.S.; Fogelson, J.L.; Currier, B.L.; Freedman, B.A.; Bydon, M.; Nassr, A. Incidence of Osteoporosis-Related Complications Following Posterior Lumbar Fusion. Glob. Spine J. 2018, 8, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Rometsch, E.; Spruit, M.; Zigler, J.E.; Menon, V.K.; Ouellet, J.A.; Mazel, C.; Härt, R. Screw-Related Complications After Instrumentation of the Osteoporotic Spine: A Systematic Literature Review With Meta-Analysis. Glob. Spine J. 2020, 10, 69–88. [Google Scholar] [CrossRef] [PubMed]
- Mikula, A.L.; Lakomkin, N.; Pennington, Z.; Pinter, Z.W.; Nassr, A.; Freedman, B.; Sebastian, A.; Abode-Iyamah, K.; Bydon, M.; Ames, C.L.; et al. Association between lower Hounsfield units and proximal junctional kyphosis and failure at the upper thoracic spine. J. Neurosurg. Spine 2022, 37, 694–702. [Google Scholar] [CrossRef]
- Pennington, Z.; Mikula, A.L.; Lakomkin, N.; Martini, M.; Pinter, Z.W.; Shafi, M.; Hamouda, A.; Bydon, M.; Clarke, M.J.; Freedman, B.A.; et al. Bone Quality as Measured by Hounsfield Units More Accurately Predicts Proximal Junctional Kyphosis than Vertebral Bone Quality Following Long-Segment Thoracolumbar Fusion. World Neurosurg. 2024, 186, e584–e592. [Google Scholar] [CrossRef]
- Mikula, A.L.; Lakomkin, N.; Hamouda, A.M.; Everson, M.C.; Pennington, Z.; Kumar, R.; Pinter, Z.W.; Martini, M.L.; Bydon, M.; Kenner, K.A.; et al. Change in spinal bone mineral density as estimated by Hounsfield units following osteoporosis treatment with romosozumab, teriparatide, denosumab, and alendronate: An analysis of 318 patients. J. Neurosurg. Spine 2024, 41, 309–315. [Google Scholar] [CrossRef]
- Mikula, A.L.; Puffer, R.C.; Jeor, J.D.S.; Bernatz, J.T.; Fogelson, J.L.; Larson, A.N.; Nassr, A.; Sebastian, A.S.; Freedman, B.A.; Currier, B.L.; et al. Teriparatide treatment increases Hounsfield units in the lumbar spine out of proportion to DEXA changes. J. Neurosurg. Spine 2020, 32, 50–55. [Google Scholar] [CrossRef]
- Kim, B.; Cho, Y.J.; Lim, W. Osteoporosis therapies and their mechanisms of action (Review). Exp. Ther. Med. 2021, 22, 1379. [Google Scholar] [CrossRef]
- Kong, M.; Gao, C.; Luan, X.; Fan, C.; Hao, M.; Jin, C.; Zhao, J.; Li, H.; Zhao, J.; Luan, J.; et al. Analyzing the factors associated with efficacy among teriparatide treatment in postmenopausal women with osteoporosis. BMC Musculoskelet. Disord. 2024, 25, 109. [Google Scholar] [CrossRef]
- Cairoli, E.; Eller-Vainicher, C.; Ulivieri, F.M.; Zhukouskaya, V.V.; Palmieri, S.; Morelli, V.; Beck-Peccoz, P.; Chiodini, I. Factors associated with bisphosphonate treatment failure in postmenopausal women with primary osteoporosis. Osteoporos. Int. 2014, 25, 1401–1410. [Google Scholar] [CrossRef]
- Langdahl, B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol. 2021, 178, 1891–1906. [Google Scholar] [CrossRef] [PubMed]
- Pennington, Z.; Ehresman, J.; Lubelski, D.; Cottrill, E.; Schilling, A.; Ahmed, A.K.; Feghali, J.; Witham, T.F.; Sciubba, D.M. Assessing underlying bone quality in spine surgery patients: A narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. Spine J. 2021, 21, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.L.; Mikula, A.L.; Lakomkin, N.; Pennington, Z.; Everson, M.C.; Hamouda, A.M.; Bydon, M.; Freedman, B.; Sebastian, A.S.; Nassr, A.; et al. Opportunistic CT-Based Hounsfield Units Strongly Correlate with Biomechanical CT Measurements in the Thoracolumbar Spine. Spine 2024, 49, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Pennington, Z.; Mikula, A.L.; Lakomkin, N.; Martini, M.; Clarke, M.J.; Sebastian, A.S.; Freedman, B.A.; Rose, P.S.; Karim, S.M.; Nassr, A.; et al. Comparison of Hounsfield units and vertebral bone quality score for the prediction of time to pathologic fracture in mobile spine metastases treated with radiotherapy. J. Neurosurg. Spine 2024, 40, 19–27. [Google Scholar] [CrossRef]
- Marques, M.L.; da Silva, N.P.; van der Heijde, D.; Reijnierse, M.; Baraliakos, X.; Braun, J.; van Gaalen, F.; Ramiro, S. Hounsfield Units measured in low dose CT reliably assess vertebral trabecular bone density changes over two years in axial spondyloarthritis. Semin. Arthritis Rheum. 2023, 58, 152144. [Google Scholar] [CrossRef]
- Hamouda, A.M.; Pennington, Z.; Astudillo Potes, M.; Shafi, M.; Mikula, A.L.; Lakomkin, N.; Martini, M.L.; Bydon, M.; Kennel, K.A.; Drake, M.T.; et al. Impact of contrast administration and CT reconstruction plane on Hounsfield units for assessing underlying bone quality in the lumbar spine. J. Neurosurg. Spine 2024, 42, 331–339. [Google Scholar] [CrossRef]
- Tanphiriyakun, T.; Rojanasthien, S.; Khumrin, P. Bone mineral density response prediction following osteoporosis treatment using machine learning to aid personalized therapy. Sci. Rep. 2021, 11, 13811. [Google Scholar] [CrossRef]
- Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43, 92–104. [Google Scholar]
- Fan, Z.Q.; Yan, X.A.; Li, B.F.; Shen, E.; Xu, X.; Wang, H.; Zhaung, Y. Prevalence of osteoporosis in spinal surgery patients older than 50 years: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0286110. [Google Scholar] [CrossRef]
- Lubelski, D.; Choma, T.J.; Steinmetz, M.P.; Harrop, J.S.; Mroz, T.E. Perioperative Medical Management of Spine Surgery Patients With Osteoporosis. Neurosurgery 2015, 77, S92–S97. [Google Scholar] [CrossRef]
- Mugge, L.; DeBacker Dang, D.; Caras, A.; Dang, J.V.; Diekemper, N.; Green, B.A.; Gjolaj, J.P.; Fanous, A.A. Osteoporosis as a Risk Factor for Intraoperative Complications and Long-term Instrumentation Failure in Patients with Scoliotic Spinal Deformity. Spine 2022, 47, 1435–1442. [Google Scholar] [CrossRef]
- Filley, A.; Baldwin, A.; Ben-Natan, A.R.; Hansen, K.; Arora, A.; Xiao, A.; Hammond, D.; Chen, C.; Tweedt, I.; Rohde, J.; et al. The influence of osteoporosis on mechanical complications in lumbar fusion surgery: A systematic review. N. Am. Spine Soc. J. (NASSJ) 2024, 18, 100327. [Google Scholar] [CrossRef] [PubMed]
- Eysel, P.; Schwitalle, M.; Oberstein, A.; Rompe, J.D.; Hopf, C.; Küllmer, K. Preoperative estimation of screw fixation strength in vertebral bodies. Spine 1998, 23, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. 2016 Annual Meeting of the Orthopaedic Research Society Orlando, FL March 5–8, 2016. J. Orthop. Res. 2016, 34 (Suppl. S1), S1. [Google Scholar]
- Jain, N.; Labaran, L.; Phillips, F.M.; Khan, S.N.; Jain, A.; Kebaish, K.M.; Hassanzadeh, H. Prevalence of Osteoporosis Treatment and Its Effect on Post-Operative Complications, Revision Surgery and Costs After Multi-Level Spinal Fusion. Glob. Spine J. 2022, 12, 1119–1124. [Google Scholar] [CrossRef]
- Buerba, R.A.; Sharma, A.; Ziino, C.; Arzeno, A.; Ajiboye, R.M. Bisphosphonate and Teriparatide Use in Thoracolumbar Spinal Fusion: A Systematic Review and Meta-analysis of Comparative Studies. Spine 2018, 43, E1014–E1023. [Google Scholar] [CrossRef]
- Nagahama, K.; Kanayama, M.; Togawa, D.; Hashimoto, T.; Minami, A. Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J. Neurosurg. Spine 2011, 14, 500–507. [Google Scholar] [CrossRef]
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2022, 39, 58–74. [Google Scholar] [CrossRef]
- Cummings, S.R.; Ferrari, S.; Eastell, R.; Gilchrist, N.; Jensen, J.B.; McClung, M.; Roux, C.; Törring, O.; Valter, I.; Wang, A.T.; et al. Vertebral Fractures After Discontinuation of Denosumab: A Post Hoc Analysis of the Randomized Placebo-Controlled FREEDOM Trial and Its Extension. J. Bone Miner. Res. 2018, 33, 190–198. [Google Scholar] [CrossRef]
- Bone, H.G.; Wagman, R.B.; Brandi, M.L.; Brown, J.P.; Chapurlat, R.; Cummings, S.R.; Czerwiński, E.; Fahrleitner-Pammer, A.; Kendler, D.L.; Lippuner, K.; et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: Results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017, 5, 513–523. [Google Scholar] [CrossRef]
- Ryu, S.; Yoon, S.J.; Lee, C.K.; Yi, S.; Kim, K.N.; Ha, Y.; Shin, D.A. The Combined Effects of RhBMP-2 and Systemic RANKL Inhibitor in Patients With Bone Density Loss Undergoing Posterior Lumbar Interbody Fusion: A Retrospective Observational Analysis With Propensity Score Matching. Neurospine 2023, 20, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Ishikawa, K.; Kudo, Y.; Tsuchiya, K.; Matsuoka, A.; Maruyama, H.; Emori, H.; Yamamura, R.; Hayakawa, C.; Sekimizu, M.; et al. The effect of denosumab on pedicle screw fixation: A prospective 2-year longitudinal study using finite element analysis. J. Orthop. Surg. Res. 2021, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Ide, M.; Yamada, K.; Kaneko, K.; Sekiya, T.; Kanai, K.; Higashi, T.; Saito, T. Combined teriparatide and denosumab therapy accelerates spinal fusion following posterior lumbar interbody fusion. Orthop. Traumatol. Surg. Res. 2018, 104, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.L.; Marin, F.; Zerbini, C.A.F.; Russo, L.A.; Greenspan, S.L.; Zikan, V.; Bagur, A.; Malouf-Sierra, J.; Lakatos, P.; Fahrleitner-Pammer, A.; et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): A multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 2018, 391, 230–240. [Google Scholar] [CrossRef]
- Seki, S.; Hirano, N.; Kawaguchi, Y.; Nakano, M.; Yasuda, T.; Suzuki, K.; Watanabe, K.; Makino, H.; Kanamori, M.; Kimura, T. Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis. Eur. Spine J. 2017, 26, 2121–2127. [Google Scholar] [CrossRef]
- Ebata, S.; Takahashi, J.; Hasegawa, T.; Mukaiyama, K.; Isogai, Y.; Ohba, T.; Shibata, Y.; Ojima, T.; Yamagata, Z.; Matsuyama, Y.; et al. Role of Weekly Teriparatide Administration in Osseous Union Enhancement within Six Months After Posterior or Transforaminal Lumbar Interbody Fusion for Osteoporosis-Associated Lumbar Degenerative Disorders: A Multicenter, Prospective Randomized Study. JBJS 2017, 99, 365–372. [Google Scholar] [CrossRef]
- Yagi, M.; Ohne, H.; Konomi, T.; Fujiyoshi, K.; Kaneko, S.; Komiyama, T.; Takemitsu, M.; Yato, Y.; Machida, M.; Asazuma, T. Teriparatide improves volumetric bone mineral density and fine bone structure in the UIV+1 vertebra, and reduces bone failure type PJK after surgery for adult spinal deformity. Osteoporos. Int. 2016, 27, 3495–3502. [Google Scholar] [CrossRef]
- Jespersen, A.B.; Andresen, A.D.K.; Jacobsen, M.K.; Andersen, M.; Carreon, L.Y. Does Systemic Administration of Parathyroid Hormone After Noninstrumented Spinal Fusion Surgery Improve Fusion Rates and Fusion Mass in Elderly Patients Compared to Placebo in Patients With Degenerative Lumbar Spondylolisthesis? Spine 2019, 44, 157–162. [Google Scholar] [CrossRef]
- McClung, M.R.; Grauer, A.; Boonen, S.; Bolognese, M.A.; Brown, J.P.; Diez-Perez, A.; Langdahl, B.L.; Reginster, J.-Y.; Zanchetta, J.R.; Wasserman, S.M.; et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2014, 370, 412–420. [Google Scholar] [CrossRef]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef]
- Tian, A.; Jia, H.; Zhu, S.; Lu, B.; Li, Y.; Ma, J.; Ma, X. Romosozumab versus Teriparatide for the Treatment of Postmenopausal Osteoporosis: A Systematic Review and Meta-analysis through a Grade Analysis of Evidence. Orthop. Surg. 2021, 13, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Takahashi, S.; Yasuda, H.; Terakawa, M.; Konishi, S.; Kato, M.; Toyoda, H.; Suzuki, A.; Tamai, K.; Iwamae, M.; et al. Effect of romosozumab administration on proximal junctional kyphosis in corrective spinal fusion surgery. Spine J. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, H.; Wu, J.Y.; Lee, J.S.; Zygourakis, C.C. Anabolic and Antiresorptive Osteoporosis Treatment: Trends, Costs, and Sequence in a Commercially Insured Population, 2003–2021. JBMR Plus 2023, 7, e10800. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cornelissen, D.; Silverman, S.; Pinto, D.; Si, L.; Kremer, I.; Bours, S.; de Bot, R.; Boonen, A.; Evers, S.; et al. An Updated Systematic Review of Cost-Effectiveness Analyses of Drugs for Osteoporosis. Pharmacoeconomics 2021, 39, 181–209. [Google Scholar] [CrossRef]
- Chattaris, T.; Oh, G.; Gouskova, N.A.; Kim, D.H.; Kiel, D.P.; Berry, S.D. Osteoporosis Medications Prevent Subsequent Fracture in Frail Older Adults. J. Bone Miner. Res. 2022, 37, 2103–2111. [Google Scholar] [CrossRef]
- Kaufman, J.M.; Reginster, J.Y.; Boonen, S.; Brandi, M.L.; Cooper, C.; Dere, W.; Devogelaer, J.-P.; Diez-Perez, A.; Kanis, J.A.; McCloskey, E.; et al. Treatment of osteoporosis in men. Bone 2013, 53, 134–144. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Xie, N.; Sun, X.-D.; Nice, E.C.; Liou, Y.-C.; Huang, C.; Zhu, H.; Shen, Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res. 2024, 12, 8. [Google Scholar] [CrossRef]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther. Adv. Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef]
- Iconaru, L.; Moreau, M.; Kinnard, V.; Baleanu, F.; Paesmans, M.; Karmali, R.; Body, J.J.; Bergmann, P. Does the Prediction Accuracy of Osteoporotic Fractures by BMD and Clinical Risk Factors Vary With Fracture Site? JBMR Plus 2019, 3, e10238. [Google Scholar] [CrossRef]
[ALL] N = 267 | Alendronate N = 95 | Denosumab N = 113 | Romosozumab N = 31 | Teriparatide N = 28 | p-Value | |
---|---|---|---|---|---|---|
Age | 74.0 [66.0, 81.0] | 71.0 [65.0–77.5] | 81.0 [74.0, 85.0] | 71.0 [60.0–77.0] | 65.0 [61.0, 72.0] | <0.001 |
Sex: | <0.001 | |||||
Female | 172 (64.4%) | 43 (45.3%) | 78 (69.0%) | 28 (90.3%) | 23 (82.1%) | |
Male | 95 (35.6%) | 52 (54.7%) | 35 (31.0%) | 3 (9.68%) | 5 (17.9%) | |
mFI5: | <0.001 | |||||
mFI-0 | 109 (40.8%) | 25 (26.3%) | 43 (38.1%) | 31 (100%) | 10 (35.7%) | |
mFI-1 | 88 (33.0%) | 39 (41.1%) | 40 (35.4%) | 0 (0.00%) | 9 (32.1%) | |
mFI-2+ | 70 (26.2%) | 31 (32.6%) | 30 (26.5%) | 0 (0.00%) | 9 (32.1%) | |
RAI | 20.0 [13.0, 28.0] | 21.0 [13.5, −27.5] | 22.0 [16.0, 31.0] | 18.0 [9.50, 20.0] | 17.5 [9.50, 26.5] | 0.004 |
BMI | 25.6 [22.1, 29.9] | 27.9 [23.7, 32.0] | 24.0 [21.1, 27.9] | 26.0 [23.0, 27.5] | 24.1 [21.2, 27.5] | <0.001 |
Active smoker | 25 (9.36%) | 10 (10.5%) | 8 (7.08%) | 6 (19.4%) | 1 (3.57%) | 0.165 |
HU pre-treatment | 103 [81, 126] | 106 [89, 134] | 106 [79, 123] | 84 [67, 108.0] | 102 [86, 146] | 0.022 |
HU post-treatment | 109 [82, 137] | 109 [85, 132] | 108 [80, 136] | 98 [82, 130] | 129 [82, 164] | 0.430 |
Treatment duration (months) | 18.0 [12.3, 30.0] | 31.7 [21.7, 44.2] | 17.1 [12.9, 23.9] | 10.9 [8.02, 12.0] | 10.4 [5.7, 17.0] | <0.001 |
ΔHU | 5.8 [−11.0, 22.5] | 1.6 [−13.0, 22.5] | 3.3 [−12.6, 22.5] | 18.3 [5.5, 22.5] | 21.5 [−2.5, 22.5] | <0.001 |
Improved (ΔHU ≥ 7) | 127 (47.6%) | 39 (41.1%) | 50 (44.2%) | 21 (67.7%) | 17 (60.7%) | 0.028 |
Univariable | Multivariable | |||
---|---|---|---|---|
Variable | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Male (ref: female) | 0.54 [0.32, 0.90] | 0.019 | 0.53 [0.29, 0.93] | 0.028 |
mFI-1 (ref: mFI-0) | 0.80 [0.44, 1.45] | 0.460 | ||
mFI-2+ (ref: mFI-0) | 0.75 [0.43, 1.32] | 0.325 | ||
Treatment duration (months) | 0.97 [0.95, 0.99] | 0.002 | 0.99 [0.98, 1.00] | 0.002 |
Age | 0.98 [0.96, 1.00] | 0.071 | 0.97 [0.95, 1.00] | 0.049 |
BMI | 0.98 [0.94, 1.02] | 0.295 | ||
HU pre-treatment | 0.99 [0.98, 1.00] | 0.006 | 0.99 [0.98, 1.00] | 0.002 |
RAI | 1.00 [0.98, 1.02] | 0.945 | ||
Active smoker | 1.02 [0.44, 2.34] | 0.964 | ||
Denosumab (ref: alendronate) | 1.14 [0.66, 1.98] | 0.643 | 0.81 [0.40, 1.63] | 0.554 |
Teriparatide (ref: alendronate) | 2.22 [0.95, 5.38] | 0.070 | 0.88 [0.31, 2.52] | 0.811 |
Romosozumab (ref: alendronate) | 3.02 [1.31, 7.35] | 0.012 | 0.93 [0.32, 2.77] | 0.902 |
Univariable | Multivariable | |||
---|---|---|---|---|
Variable | β (95% CI) | p-Value | β (95% CI) | p-Value |
Male (ref: female) | −7.17 [−14.57, 0.23] | 0.057 | ||
mFI-1 (ref: mFI-0) | −1.26 [−9.61, 7.10] | 0.768 | ||
mFI-2+ (ref: mFI-0) | −3.69 [−12.62, 5.24] | 0.417 | ||
Treatment duration (months) | −0.42 [−0.65, −0.19] | <0.001 | −0.30 [−0.53, −0.07] | 0.007 |
Age | −0.26 [−0.59, −0.07] | 0.118 | −0.39 [−0.72, −0.07] | 0.005 |
BMI | −0.39 [−0.94, 0.16] | 0.166 | −0.35 [−0.89, 0.19] | 0.098 |
HU pre-treatment | −0.18 [−0.2, −0.09] | <0.001 | −0.19 [−0.28, −0.10] | <0.001 |
RAI | −0.08 [−0.40, 0.23] | 0.607 | ||
Active smoker | 4.12 [−8.11, 16.36] | 0.507 | ||
Denosumab (ref: alendronate) | 1.63 [−6.22, 9.48] | 0.683 | ||
Teriparatide (ref: alendronate) | 20.09 [7.96,32.21] | 0.001 | ||
Romosozumab (ref: alendronate) | 19.39 [7.72, 31.05] | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamouda, A.M.; Pennington, Z.; Kumar, R.; Martini, M.L.; Obiri-Yeboah, D.; Astudillo Potes, M.; Kendall, N.; Mikula, A.L.; Clarke, M.J.; Krauss, W.E.; et al. Impact of Frailty and Other Factors as Estimated by HU to Predict Response to Anabolic Bone Medications. J. Clin. Med. 2025, 14, 3247. https://doi.org/10.3390/jcm14093247
Hamouda AM, Pennington Z, Kumar R, Martini ML, Obiri-Yeboah D, Astudillo Potes M, Kendall N, Mikula AL, Clarke MJ, Krauss WE, et al. Impact of Frailty and Other Factors as Estimated by HU to Predict Response to Anabolic Bone Medications. Journal of Clinical Medicine. 2025; 14(9):3247. https://doi.org/10.3390/jcm14093247
Chicago/Turabian StyleHamouda, Abdelrahman M., Zach Pennington, Rahul Kumar, Michael L. Martini, Derrick Obiri-Yeboah, Maria Astudillo Potes, Nicholas Kendall, Anthony L. Mikula, Michelle J. Clarke, William E. Krauss, and et al. 2025. "Impact of Frailty and Other Factors as Estimated by HU to Predict Response to Anabolic Bone Medications" Journal of Clinical Medicine 14, no. 9: 3247. https://doi.org/10.3390/jcm14093247
APA StyleHamouda, A. M., Pennington, Z., Kumar, R., Martini, M. L., Obiri-Yeboah, D., Astudillo Potes, M., Kendall, N., Mikula, A. L., Clarke, M. J., Krauss, W. E., Nassr, A. N., Freedman, B. A., Sebastian, A. S., Helgeson, M. D., Kennel, K. A., Fogelson, J. L., & Elder, B. D. (2025). Impact of Frailty and Other Factors as Estimated by HU to Predict Response to Anabolic Bone Medications. Journal of Clinical Medicine, 14(9), 3247. https://doi.org/10.3390/jcm14093247