Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update
Abstract
:1. Introduction
2. Gene Therapy
2.1. Gene Therapy as a Biofactory
2.2. Genome Editing
2.3. Vectors
2.3.1. Non-Viral Vectors
2.3.2. Viral Vectors
- Adenovirus
- b
- Adeno-Associated Virus (AAV)
- c
- Lentivirus
2.3.3. Routes of Administration for Retinal Vector Delivery
3. Genetic Therapy Targeting the VEGF Pathway for Diabetic Retinopathy or Diabetic Macular Edema
3.1. RGX-314 (ABBV-RGX-314) (Rockville, MD, USA)
3.2. 4D-150 (4D Molecular Therapeutics, Emeryville, CA, USA)
3.3. Ixoberogene Soroparvovec (Ixo-Vec, ADVM-022) (Adverum Biotechnologies, Redwood Cities, CA, USA)
3.4. Potential Risks of Gene Therapy
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- IDF. Diabetes Atlas. Available online: https://diabetesatlas.org (accessed on 19 April 2025).
- Klein, R.; Klein, B.E.; Moss, S.E. Visual impairment in diabetes. Ophthalmology 1984, 91, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Airey, M.; Baxter, H.; Forrester, J.; Kennedy-Martin, T.; Girach, A. Epidemiology of diabetic retinopathy and macular oedema: A systematic review. Eye 2004, 18, 963–983. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.M.; Brown, G.C.; Sharma, S.; Shah, G. Utility values and diabetic retinopathy. Am. J. Ophthalmol. 1999, 128, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Javitt, J.C.; Aiello, L.P.; Chiang, Y.; Ferris, F.L., 3rd; Canner, J.K.; Greenfield, S. Preventive eye care in people with diabetes is cost-saving to the federal government. Implications for health-care reform. Diabetes Care 1994, 17, 909–917. [Google Scholar] [CrossRef]
- Javitt, J.C.; Aiello, L.P. Cost-effectiveness of detecting and treating diabetic retinopathy. Ann. Intern. Med. 1996, 124, 164–169. [Google Scholar] [CrossRef]
- Tan, T.E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol. 2022, 13, 1077669. [Google Scholar] [CrossRef]
- Engerman, R.L.; Kern, T.S. Retinopathy in animal models of diabetes. Diabetes Metab. Rev. 1995, 11, 109–120. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Moss, S.E.; Cruickshanks, K.J. The Wisconsin Epidemiologic Study of diabetic retinopathy. XIV. Ten-year incidence and progression of diabetic retinopathy. Arch. Ophthalmol. 1994, 112, 1217–1228. [Google Scholar] [CrossRef]
- Singh, A.; Stewart, J.M. Pathophysiology of diabetic macular edema. Int. Ophthalmol. Clin. 2009, 49, 1–11. [Google Scholar] [CrossRef]
- Wu, L.; Acon, D.; Wu, A.; Wu, M. Vascular endothelial growth factor inhibition and proliferative diabetic retinopathy, a changing treatment paradigm? Taiwan J. Ophthalmol. 2019, 9, 216–223. [Google Scholar] [CrossRef]
- Li, H.Y.; Yuan, Y.; Fu, Y.H.; Wang, Y.; Gao, X.Y. Hypoxia-inducible factor-1alpha: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacol. Res. 2020, 159, 104924. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004, 25, 581–611. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef] [PubMed]
- Diabetic Retinopathy Study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 1981, 21, 1–226. [Google Scholar]
- Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991, 98, 786–806. [Google Scholar]
- Klein, R.; Klein, B.E.; Moss, S.E. How many steps of progression of diabetic retinopathy are meaningful? The Wisconsin epidemiologic study of diabetic retinopathy. Arch. Ophthalmol. 2001, 119, 547–553. [Google Scholar] [CrossRef]
- Zas, M.; Cotic, M.; Wu, M.; Wu, A.; Wu, L. Macular laser photocoagulation in the management of diabetic macular edema: Still relevant in 2020? Taiwan J. Ophthalmol. 2020, 10, 87–94. [Google Scholar]
- Virgili, G.; Curran, K.; Lucenteforte, E.; Peto, T.; Parravano, M. Anti-vascular endothelial growth factor for diabetic macular oedema: A network meta-analysis. Cochrane Database Syst. Rev. 2023, 2023, CD007419. [Google Scholar]
- Writing Committee for the Diabetic Retinopathy Clinical Research Network; Gross, J.G.; Glassman, A.R.; Jampol, L.M.; Inusah, S.; Aiello, L.P.; Antoszyk, A.N.; Baker, C.W.; Berger, B.B.; Bressler, N.M.; et al. Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2015, 314, 2137–2146. [Google Scholar]
- Gross, J.G.; Glassman, A.R.; Liu, D.; Sun, J.K.; Antoszyk, A.N.; Baker, C.W.; Bressler, N.M.; Elman, M.J.; Ferris, F.L., 3rd; Gardner, T.W.; et al. Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 1138–1148. [Google Scholar] [CrossRef]
- Beaulieu, W.T.; Bressler, N.M.; Melia, M.; Owsley, C.; Mein, C.E.; Gross, J.C.; Jampol, L.M.; Glassman, A.R. Panretinal Photocoagulation Versus Ranibizumab for Proliferative Diabetic Retinopathy: Patient-Centered Outcomes From a Randomized Clinical Trial. Am. J. Ophthalmol. 2016, 170, 206–213. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Prevost, A.T.; Vasconcelos, J.C.; Ridell, A.; Murphy, C.; Kelly, J.; Bainbridge, J.; Tudor-Edwards, R.; Hopkins, D.; Hykin, P. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): A multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet 2017, 389, 2193–2203. [Google Scholar] [PubMed]
- Obeid, A.; Gao, X.; Ali, F.S.; Talcott, K.E.; Aderman, C.M.; Hyman, L.; Ho, A.C.; Hsu, J. Loss to Follow-Up in Patients with Proliferative Diabetic Retinopathy after Panretinal Photocoagulation or Intravitreal Anti-VEGF Injections. Ophthalmology 2018, 125, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Obeid, A.; Su, D.; Patel, S.N.; Uhr, J.H.; Borkar, D.; Gao, X.; Fineman, M.S.; Regilio, C.D.; Maguire, J.I.; Garg, S.J. Outcomes of Eyes Lost to Follow-up with Proliferative Diabetic Retinopathy That Received Panretinal Photocoagulation versus Intravitreal Anti-Vascular Endothelial Growth Factor. Ophthalmology 2019, 126, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Wubben, T.J.; Johnson, M.W.; Anti VTISG. Anti-VEGF Therapy for Diabetic Retinopathy: Consequences of Inadvertent Treatment Interruptions. Am. J. Ophthalmol. 2019, 204, 13–18. [Google Scholar] [CrossRef]
- Bressler, S.B.; Liu, D.; Glassman, A.R.; Blodi, B.A.; Castellarin, A.A.; Jampol, L.M.; Kaufman, P.L.; Melia, M.; Singh, H.; Wells, J.A.; et al. Change in Diabetic Retinopathy Through 2 Years: Secondary Analysis of a Randomized Clinical Trial Comparing Aflibercept, Bevacizumab, and Ranibizumab. JAMA Ophthalmol. 2017, 135, 558–568. [Google Scholar] [CrossRef]
- Ip, M.S.; Domalpally, A.; Hopkins, J.J.; Wong, P.; Ehrlich, J.S. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch. Ophthalmol. 2012, 130, 1145–1152. [Google Scholar] [CrossRef]
- Wykoff, C.C. Impact of intravitreal pharmacotherapies including antivascular endothelial growth factor and corticosteroid agents on diabetic retinopathy. Curr. Opin. Ophthalmol. 2017, 28, 213–218. [Google Scholar] [CrossRef]
- Brown, D.M.; Schmidt-Erfurth, U.; Do, D.V.; Holz, F.G.; Boyer, D.S.; Midena, E.; Heier, J.S.; Terasaki, H.; Kaiser, P.K.; Marcus, D.M.; et al. Intravitreal Aflibercept for Diabetic Macular Edema: 100-Week Results From the VISTA and VIVID Studies. Ophthalmology 2015, 122, 2044–2052. [Google Scholar] [CrossRef]
- Bonnin, S.; Dupas, B.; Lavia, C.; Erginay, A.; Dhundass, M.; Couturier, A.; Gaudric, A.; Tadayoni, R. Anti-Vascular Endothelial Growth Factor Therapy Can Improve Diabetic Retinopathy Score without Change in Retinal Perfusion. Retina 2019, 39, 426–434. [Google Scholar] [CrossRef]
- Goldberg, R.A.; Hill, L.; Davis, T.; Stoilov, I. Effect of less aggressive treatment on diabetic retinopathy severity scale scores: Analyses of the RIDE and RISE open-label extension. BMJ Open Ophthalmol. 2022, 7, e001007. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Wykoff, C.C.; Boyer, D.; Heir, S.D.; Clark, W.L.; Emanuelli, A.; Higgins, P.M.; Singer, M.; Weinreich, D.M.; Yancopoulos, G.D.; et al. Evaluation of Intravitreal Aflibercept for the Treatment of Severe Nonproliferative Diabetic Retinopathy: Results From the PANORAMA Randomized Clinical Trial. JAMA Ophthalmol. 2021, 139, 946–955. [Google Scholar] [CrossRef]
- Maturi, R.K.; Glassman, A.R.; Josic, K.; Baker, C.W.; Gerstenblith, A.T.; Jampol, L.M.; Meleth, A.; Martin, D.F.; Melia, M.; Punjabi, O.S.; et al. Four-Year Visual Outcomes in the Protocol W Randomized Trial of Intravitreous Aflibercept for Prevention of Vision-Threatening Complications of Diabetic Retinopathy. JAMA 2023, 329, 376–385. [Google Scholar] [CrossRef]
- Amato, A.; Arrigo, A.; Aragona, E.; Manitto, M.P.; Saladino, A.; Bandello, F.; Battaglia Parodi, M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front. Med. 2021, 8, 750586. [Google Scholar] [CrossRef]
- Kumaran, N.; Michaelides, M.; Smith, A.J.; Ali, R.R.; Bainbridge, J.W.B. Retinal gene therapy. Br. Med. Bull. 2018, 126, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef]
- Maguire, A.M.; Russell, S.; Wellman, J.A.; Chung, D.C.; Yu, Z.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; Marshall, K.A.; et al. Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation-Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. Ophthalmology 2019, 126, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Wu, L.; Bloom, S.; Stanga, P.; Sosa Lockward, J.; Weng, C.Y.; Abbas, M.A.; Rezaei, K.A. RWC Update: Enhanced ILM Peeling; Retinal Gene Therapy; Laser-Induced Retinal Break and Vitreous Hemorrhage. Ophthalmic Surg. Lasers Imaging Retin. 2023, 54, 564–567. [Google Scholar] [CrossRef]
- Lin, F.L.; Wang, P.Y.; Chuang, Y.F.; Wang, J.H.; Wong, V.H.Y.; Bui, B.V.; Liu, G.S. Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Mol. Ther. 2020, 28, 2120–2138. [Google Scholar] [CrossRef]
- Yiu, G. Genome Editing in Retinal Diseases using CRISPR Technology. Ophthalmol. Retina 2018, 2, 1–3. [Google Scholar] [CrossRef]
- Kim, E.; Koo, T.; Park, S.W.; Kim, D.; Kim, K.; Cho, H.Y.; Song, D.W.; Lee, K.J.; Jung, M.H.; Kim, S.; et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 2017, 8, 14500. [Google Scholar] [CrossRef]
- Yiu, G.; Tieu, E.; Nguyen, A.T.; Wong, B.; Smit-McBride, Z. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease. Invest. Ophthalmol. Vis. Sci. 2016, 57, 5490–5497. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cui, G.; Lee, H.; Jeong, H.; Kwak, J.J.; Lee, J.; Byeon, S.H. CRISPR/Cas9 mediated specific ablation of vegfa in retinal pigment epithelium efficiently regresses choroidal neovascularization. Sci. Rep. 2023, 13, 3715. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhou, G.; Wu, W.; Duan, Y.; Ma, G.; Song, J.; Xiao, R.; Vandenberghe, L.; Zhang, F.; D’Amore, P.A.; et al. Genome editing abrogates angiogenesis in vivo. Nat. Commun. 2017, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Duan, Y.; Ma, G.; Zhou, G.; Park-Windhol, C.; D’Amore, P.A.; Lei, H. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro. Invest. Ophthalmol. Vis. Sci. 2017, 58, 6082–6090. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, G.; Wu, W.; Ma, G.; D´Amore, P.A.; Mukai, S.; Lei, H. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation. Invest. Ophthalmol. Vis. Sci. 2017, 58, 1228–1236. [Google Scholar] [CrossRef]
- Koo, T.; Park, S.W.; Jo, D.H.; Kim, D.; Kim, J.H.; Cho, H.Y.; Kim, J.; Kim, J.H.; Kim, J.S. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat. Commun. 2018, 9, 1855. [Google Scholar] [CrossRef]
- Cho, G.Y.; Shaefer, K.A.; Bassuk, A.G.; Tsang, S.H.; Mahajan, V.B. Crispr Genome Surgery in the Retina in Light of Off-Targeting. Retina 2018, 38, 1443–1455. [Google Scholar] [CrossRef]
- Chung, S.H.; Sin, T.N.; Ngo, T.; Yiu, G. CRISPR Technology for Ocular Angiogenesis. Front. Genome Ed. 2020, 2, 594984. [Google Scholar] [CrossRef]
- Klink, D.; Schindelhauer, D.; Laner, A.; Tucker, T.; Bebok, Z.; Schwiebert, E.M.; Boyd, A.C.; Scholte, B.J. Gene delivery systems--gene therapy vectors for cystic fibrosis. J. Cyst. Fibros. 2004, 3, 203–212. [Google Scholar] [CrossRef]
- Butt, M.H.; Zaman, M.; Ahmad, A.; Khan, R.; Mallhi, T.H.; Hasan, M.M.; Khan, Y.H.; Hafeez, S.; Massoud, E.E.S.; Rahman, M.H.; et al. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes 2022, 13, 1370. [Google Scholar] [CrossRef]
- Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res. 2015, 9, GE01–GE06. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, M.; Wang., C.; Wang, Y.; Sun, C.; Zeng, Z.; Cui, H.; Zhao, X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers 2021, 13, 3307. [Google Scholar] [CrossRef] [PubMed]
- Kay, M.A.; Nakai, H. Looking into the safety of AAV vectors. Nature 2003, 424, 251. [Google Scholar] [CrossRef]
- Lisowski, L.; Tay, S.S.; Alexander, I.E. Adeno-associated virus serotypes for gene therapeutics. Curr. Opin. Pharmacol. 2015, 24, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Everson, E.M.; Trobridge, G.D. Retroviral vector interactions with hematopoietic cells. Curr. Opin. Virol. 2016, 21, 41–46. [Google Scholar] [CrossRef]
- Daya, S.; Berns, K.I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 2008, 21, 583–593. [Google Scholar] [CrossRef]
- Shaw, A.; Cornetta, K. Design and Potential of Non-Integrating Lentiviral Vectors. Biomedicines 2014, 2, 14–35. [Google Scholar] [CrossRef]
- Surace, E.M.; Auricchio, A. Versatility of AAV vectors for retinal gene transfer. Vision. Res. 2008, 48, 353–359. [Google Scholar] [CrossRef]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Sayedahmed, E.E.; Kumari, R.; Mittal, S.K. Current Use of Adenovirus Vectors and Their Production Methods. Methods Mol. Biol. 2019, 1937, 155–175. [Google Scholar]
- Scarsella, L.; Ehrke-Schulz, E.; Paulussen, M.; Thal, S.C.; Ehrhardt, A.; Aydin, M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024, 16, 377. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Arsenijevic, Y.; Berger, A.; Udry, F.; Kostic, C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022, 14, 1605. [Google Scholar] [CrossRef]
- Berkowitz, R.; Ilves, H.; Lin, W.Y.; Eckert, K.; Coward, A.; Tamaki, S.; Veres, G.; Plavec, I. Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J. Virol. 2001, 75, 3371–3382. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Muñoz, R.J.; Balaggan, K.S.; MacNeil, A.; Howe, S.J.; Schmidt, M.; Smith, A.J.; Buch, P.; MacLaren, R.E.; Anderson, P.N.; Barker, S.E.; et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 2006, 12, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Mitrophanous, K.; Yoon, S.; Rohll, J.; Patil, D.; Wilkes, F.; Kim, V.; Kingsman, S.; Kingsman, A.; Mazarakis, N. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 1999, 6, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.R.; Reichel, M.B.; De Alwis, M.; Kanuga, N.; Kinnon, C.; Levinsky, R.J.; Hunt, D.M.; Bhattacharya, S.S.; Thrasher, A.J. Adeno-associated virus gene transfer to mouse retina. Hum. Gene Ther. 1998, 9, 81–86. [Google Scholar] [CrossRef]
- Rolling, F.; Shen, W.Y.; Tabarias, H.; Constable, I.; Kanagasingam, Y.; Barry, C.J.; Rakoczy, P.E. Evaluation of adeno-associated virus-mediated gene transfer into the rat retina by clinical fluorescence photography. Hum. Gene Ther. 1999, 10, 641–648. [Google Scholar] [CrossRef]
- Dudus, L.; Anand, V.; Acland, G.M.; Chen, S.J.; Wilson, J.M.; Fisher, K.J.; Maguire, A.M.; Bennett, J. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vision. Res. 1999, 39, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Duan, D.; Engelhardt, J.F.; Maguire, A.M. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Invest. Ophthalmol. Vis. Sci. 1997, 38, 2857–2863. [Google Scholar]
- Flannery, J.G.; Zolotukhin, S.; Vaquero, M.I.; LaVail, M.M.; Muzyczka, N.; Huswirth, W.W. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA 1997, 94, 6916–6921. [Google Scholar] [CrossRef] [PubMed]
- Balaggan, K.S.; Ali, R.R. Ocular gene delivery using lentiviral vectors. Gene Ther. 2012, 19, 145–153. [Google Scholar] [CrossRef]
- Xu, D.; Khan, M.A.; Ho, A.C. Creating an Ocular Biofactory: Surgical Approaches in Gene Therapy for Acquired Retinal Diseases. Asia Pac. J. Ophthalmol. 2021, 10, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Shen, J.; Hafiz, Z.; Hackett, S.F.; Silva, R.L.E.; Khan, M.; Lorenc, V.E.; Chen, D.; Chadha, R.; Zhang, M.; et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J. Clin. Investig. 2019, 129, 4901–4911. [Google Scholar] [CrossRef]
- Ross, M.; Ofri, R. The future of retinal gene therapy: Evolving from subretinal to intravitreal vector delivery. Neural Regen. Res. 2021, 16, 1751–1759. [Google Scholar]
- Dalkara, D.; Byrne, L.C.; Klimczak, R.R.; Visel, M.; Yin, L.; Merigan, W.H.; Flannery, J.G.; Schaffer, D.V. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 2013, 5, 189ra76. [Google Scholar] [CrossRef]
- Kansara, V.; Muya, L.; Wan, C.R.; Ciulla, T.A. Suprachoroidal Delivery of Viral and Nonviral Gene Therapy for Retinal Diseases. J. Ocul. Pharmacol. Ther. 2020, 36, 384–392. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Avery, R.L.; Barakat, M.R.; Barakat, M.R.; Boyer, D.S.; Brown, D.S.; Brown, D.M.; Brucker, A.J.; Cunningham, E. T Jr.; Heier, J.S.; et al. Suprachoroidal Space Injection Technique: Expert Panel Guidance. Retina 2024, 44, 939–949. [Google Scholar]
- Chung, S.H.; Mollhoff, I.N.; Mishra, A.; Sin, T.N.; Ngo, T.; Ciulla, T.; Sieving, P.; Thomasy, S.M.; Yiu, G. Host Immune Responses after Suprachoroidal Delivery of AAV8 in Nonhuman Primate Eyes. Hum. Gene Ther. 2021, 32, 682–693. [Google Scholar] [CrossRef]
- Liu, Y.; Fortmann, S.D.; Shen, J.; Wielechowski, E.; Tretiakova, A.; Yoo, S.; Kozarsky, K.; Wang, J.; Wilson, J.M.; Campochiaro, P.A. AAV8-antiVEGFfab Ocular Gene Transfer for Neovascular Age-Related Macular Degeneration. Mol. Ther. 2018, 26, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D. Suprachoroidal Delivery of Investigational ABBV-RGX-314 for Diabetic Retinopathy: The Phase II ALTITUDE Study Dose Levels 1 and 2: One Year Results. In Proceedings of the Annual Meeting of the Macula Society, La Quinta, CA, USA, 7–10 February 2024; Available online: https://www.xcdsystem.com/maculasociety/member/update_profile.cfm?view=products (accessed on 26 March 2025).
- Calton, M.A.; Croze, R.H.; Burns, C.; Beliakoff, G.; Vazin, T.; Szymanski, P.; Schmitt, C.; Klein, A.; Leong, M.; Quezada, M.; et al. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Invest. Ophthalmol. Vis. Sci. 2024, 65, 1. [Google Scholar] [CrossRef] [PubMed]
- Sheth, V. SPECTRA: DME Part 1 32 Week Interim Data. Available online: https://ir.4dmoleculartherapeutics.com/static-files/15cda318-ccbf-4b58-81bc-2ecdb4d4907d (accessed on 26 March 2025).
- Gelfman, C.M.; Grishanin, R.; Bender, K.O.; Nguyen, A.; Greengard, J.; Sharma, P.; Nieves, J.; Kiss, S.; Gasmi, M. Comprehensive Preclinical Assessment of ADVM-022, an Intravitreal Anti-VEGF Gene Therapy for the Treatment of Neovascular AMD and Diabetic Macular Edema. J. Ocul. Pharmacol. Ther. 2021, 37, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C. Intravitreal Gene Therapy for Diabetic Macular Edema with ADVM-022: First Time Data Presentation of Prospective, Randomized, Phase 2 INFINITY Trial. In Proceedings of the Annual Meeting of the American Society of Retinal Specialists, San Antonio, TX, USA, 8–12 October 2021; Available online: https://www.asrs.org/annual-meeting/archives?_year=2021#537 (accessed on 26 March 2025).
- Yi, Y.; Hahm, S.H.; Lee, K.H. Retroviral gene therapy: Safety issues and possible solutions. Curr. Gene Ther. 2005, 5, 25–35. [Google Scholar] [CrossRef]
- Raper, S.E.; Chirmule, N.; Lee, F.S.; Wivel, N.A.; Bagg, A.; Gao, G.P.; Wilson, J.M.; Batshaw, M.L. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 2003, 80, 148–158. [Google Scholar] [CrossRef]
- Wilson, J.M. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol. Genet. Metab. 2009, 96, 151–157. [Google Scholar] [CrossRef]
- Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 1999, 286, 2244–2245. [Google Scholar] [CrossRef]
- Cavazzana-Calvo, M.; Hacein-Bey, S.; de Saint Basile, G.; Gross, F.; Yvon, E.; Nusbaum, P.; Selz, F.; Hue, C.; Certain, S.; Casanova, J.L.; et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000, 288, 669–672. [Google Scholar] [CrossRef]
- Kaiser, J. Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science 2003, 299, 495. [Google Scholar]
- Kohn, D.B.; Sadelain, M.; Glorioso, J.C. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 2003, 3, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Purdy, R.; John, M.; Bray, A.; Clare, A.J.; Copland, D.A.; Chan, Y.K.; Henderson, R.H.; Nerinckx, F.; Leroy, B.P.; Yang, P.; et al. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog. Retin. Eye Res. 2025, 106, 101354. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.K.; Dick, A.D.; Hall, S.M.; Langmann, T.; Scribner, C.L.; Mansfield, B.C.; Ocular Gene Therapy Inflammation Working Group. Inflammation in Viral Vector-Mediated Ocular Gene Therapy: A Review and Report From a Workshop Hosted by the Foundation Fighting Blindness, 9/2020. Transl. Vis. Sci. Technol. 2021, 10, 3. [Google Scholar] [CrossRef]
- Peters, S.; Heiduschka, P.; Julien, S.; Ziemssen, F.; Fietz, H.; Bartz-Schmidt, K.U.; Tübingen Bevacizumab Study Group; Schraermeyer, U. Ultrastructural Findings in the Primate Eye After Intravitreal Injection of Bevacizumab. Am. J. Ophthalmol. 2007, 143, 995–1002. [Google Scholar] [CrossRef] [PubMed]
RGX-314 | ADV-022 Ixoberogene Ixo-Vec | 4D-150 | |
Sponsor | Regenxbio—Abbie | Adverum | Molecular Therapeutics |
Transgene Product | Ranibizumab-like anti-VEGF monoclonal antibody fragment | Aflibercept-like | Aflibercept-like plus VEGF-C inhibitory RNA |
Vector | AAV8 | AAV2.7m8 | AAV-R100 |
Clinical Trial | ALTITUDE | INFINITY | SPECTRA |
Route of Delivery | Suprachoroidal | Intravitreal | Intravitreal |
Dose (vg/eye) | 2.5 × 1011 (N = 15) 5 × 1011 (N= 35) 1 × 1012 | 2 × 1011 (N = 12) 6 × 1011 (N = 13) | 5 × 109 (N = 1) 1 × 1010 (N = 11) 3 × 1010 (N = 9) |
Therapeutic Indication | NPDR | DME | DME |
Anti-Inflammatory Prophylaxis | Low Dose = None Middle Dose = None High Dose = Topical Steroids | Topical Difluprednate 0.05% for 10 wks | Topical Difluprednate 0.05% for 16 wks |
BCVA Outcomes (Letters) | Not Reported | AFL control = +7.5 Low dose = +8.8 High dose = −6.9 | Middle Dose = +8.4 High Dose = +7.1 |
Central Subfield Thickness Outcomes (µm) | Not Reported | AFL control = −117 Low dose = −152 High dose = −144 | Middle Dose =−194 Low Dose = −153 |
Rescue anti-VEGF Requirement | AFL control = 89% Low Dose = 39% High Dose= 25% | ||
Treatment Burden Reduction | Middle Dose = 65% High Dose = 86% | ||
DRSS ≥ 2 Step Improvement | Control = 12.5% Low Dose = 33.3% Middle Dose = 20.8% | AFL control = 29% Low dose = 46% High dose = 46% | NOT REPORTED |
Development of Vision-Threatening Events (DME and PDR) | Control = 37.5% Low Dose = 16.7% Middle Dose = 4.2% | NOT APPLICABLE | NOT APPLICABLE |
Adverse Events Intraocular Inflammation | Low Dose = 0% Middle Dose = 8.6% | AFL control = 33% Low dose = 92% High dose = 83% | Middle Dose = 0% Low Dose = 0% |
Adverse Events Episcleritis | Low Dose = 6.7% Middle Dose = 14.3% | AFL control = 0% Low dose = 0% High dose = 0% | Middle dose = 0% High dose = 0% |
Adverse Events Increase Intraocular Pressure | Low Dose = 6.7% Middle Dose = 8.6% | AFL Control = 0% Low dose = 0% High dose = 0% | Middle dose = 0% High dose = 0% |
Adverse Events Hypotony | Low Dose = 0% Middle Dose = 0% | AFL control = 0% Low dose = 0% High dose = 25% | Middle dose = 0% High dose = 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odio-Herrera, M.; Orozco-Loaiza, G.; Wu, L. Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update. J. Clin. Med. 2025, 14, 3205. https://doi.org/10.3390/jcm14093205
Odio-Herrera M, Orozco-Loaiza G, Wu L. Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update. Journal of Clinical Medicine. 2025; 14(9):3205. https://doi.org/10.3390/jcm14093205
Chicago/Turabian StyleOdio-Herrera, Maricruz, Gloriana Orozco-Loaiza, and Lihteh Wu. 2025. "Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update" Journal of Clinical Medicine 14, no. 9: 3205. https://doi.org/10.3390/jcm14093205
APA StyleOdio-Herrera, M., Orozco-Loaiza, G., & Wu, L. (2025). Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update. Journal of Clinical Medicine, 14(9), 3205. https://doi.org/10.3390/jcm14093205